AOC-IDS: Autonomous Online Framework with Contrastive Learning for Intrusion Detection
- URL: http://arxiv.org/abs/2402.01807v1
- Date: Fri, 2 Feb 2024 10:56:13 GMT
- Title: AOC-IDS: Autonomous Online Framework with Contrastive Learning for Intrusion Detection
- Authors: Xinchen Zhang, Running Zhao, Zhihan Jiang, Zhicong Sun, Yulong Ding, Edith C. H. Ngai, Shuang-Hua Yang,
- Abstract summary: The rapid expansion of the Internet of Things (IoT) has raised increasing concern about targeted cyber attacks.
Previous research primarily focused on static Intrusion Detection Systems (IDSs)
AOC-IDS features an autonomous anomaly detection module (ADM) and a labor-free online framework for continual adaptation.
- Score: 6.613032895263769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid expansion of the Internet of Things (IoT) has raised increasing concern about targeted cyber attacks. Previous research primarily focused on static Intrusion Detection Systems (IDSs), which employ offline training to safeguard IoT systems. However, such static IDSs struggle with real-world scenarios where IoT system behaviors and attack strategies can undergo rapid evolution, necessitating dynamic and adaptable IDSs. In response to this challenge, we propose AOC-IDS, a novel online IDS that features an autonomous anomaly detection module (ADM) and a labor-free online framework for continual adaptation. In order to enhance data comprehension, the ADM employs an Autoencoder (AE) with a tailored Cluster Repelling Contrastive (CRC) loss function to generate distinctive representation from limited or incrementally incoming data in the online setting. Moreover, to reduce the burden of manual labeling, our online framework leverages pseudo-labels automatically generated from the decision-making process in the ADM to facilitate periodic updates of the ADM. The elimination of human intervention for labeling and decision-making boosts the system's compatibility and adaptability in the online setting to remain synchronized with dynamic environments. Experimental validation using the NSL-KDD and UNSW-NB15 datasets demonstrates the superior performance and adaptability of AOC-IDS, surpassing the state-of-the-art solutions. The code is released at https://github.com/xinchen930/AOC-IDS.
Related papers
- Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
Continual Test-Time Adaptation involves adapting a pre-trained source model to continually changing unsupervised target domains.
We analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting.
We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream.
arXiv Detail & Related papers (2024-07-12T15:48:40Z) - Enhancing IoT Security Against DDoS Attacks through Federated Learning [0.0]
Internet of Things (IoT) has ushered in transformative connectivity between physical devices and the digital realm.
Traditional DDoS mitigation approaches are ill-equipped to handle the intricacies of IoT ecosystems.
This paper introduces an innovative strategy to bolster the security of IoT networks against DDoS attacks by harnessing the power of Federated Learning.
arXiv Detail & Related papers (2024-03-16T16:45:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - OrcoDCS: An IoT-Edge Orchestrated Online Deep Compressed Sensing
Framework [31.95604675656826]
We propose OrcoDCS, an IoT-Edge orchestrated online deep compressed sensing framework.
OrcoDCS offers high flexibility and adaptability to distinct IoT device groups and their sensing tasks.
We show analytically and empirically that OrcoDCS outperforms the state-of-the-art DCDA on training time.
arXiv Detail & Related papers (2023-08-05T04:19:35Z) - Online Self-Supervised Deep Learning for Intrusion Detection Systems [1.2952596966415793]
This paper proposes a novel Self-Supervised Intrusion Detection (SSID) framework, which enables a fully online Deep Learning (DL) based Intrusion Detection System (IDS)
The proposed framework analyzes and labels incoming traffic packets based only on the decisions of the IDS itself.
This approach avoids human errors in data labeling, and human labor and computational costs of model training and data collection.
arXiv Detail & Related papers (2023-06-22T16:46:35Z) - Age of Semantics in Cooperative Communications: To Expedite Simulation
Towards Real via Offline Reinforcement Learning [53.18060442931179]
We propose the age of semantics (AoS) for measuring semantics freshness of status updates in a cooperative relay communication system.
We derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework.
We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset.
arXiv Detail & Related papers (2022-09-19T11:55:28Z) - A Novel Online Incremental Learning Intrusion Prevention System [2.5234156040689237]
This paper proposes a novel Network Intrusion Prevention System that utilise a SelfOrganizing Incremental Neural Network along with a Support Vector Machine.
Due to its structure, the proposed system provides a security solution that does not rely on signatures or rules and is capable to mitigate known and unknown attacks in real-time with high accuracy.
arXiv Detail & Related papers (2021-09-20T13:30:11Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z) - G-IDS: Generative Adversarial Networks Assisted Intrusion Detection
System [1.5119440099674917]
We propose a generative adversarial network (GAN) based intrusion detection system (G-IDS)
G-IDS generates synthetic samples, and IDS gets trained on them along with the original ones.
We find that our proposed G-IDS model performs much better in attack detection and model stabilization during the training process than a standalone IDS.
arXiv Detail & Related papers (2020-06-01T02:42:46Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.