論文の概要: On $f$-Divergence Principled Domain Adaptation: An Improved Framework
- arxiv url: http://arxiv.org/abs/2402.01887v2
- Date: Sun, 27 Oct 2024 07:54:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:19:14.871965
- Title: On $f$-Divergence Principled Domain Adaptation: An Improved Framework
- Title(参考訳): $f$-divergence Principled Domain Adaptation: 改善されたフレームワーク
- Authors: Ziqiao Wang, Yongyi Mao,
- Abstract要約: 教師なしドメイン適応(UDA)は、機械学習における分散シフトに対処する上で重要な役割を果たす。
本研究では,その$f$-divergence-baseddisrepancyを精査することにより,UDAの理論的基礎を改良する。
また、KLをベースとした新たな測定値として、$f$-domaindisrepancy(f$-DD)を導入しました。
- 参考スコア(独自算出の注目度): 34.92443710482514
- License:
- Abstract: Unsupervised domain adaptation (UDA) plays a crucial role in addressing distribution shifts in machine learning. In this work, we improve the theoretical foundations of UDA proposed in Acuna et al. (2021) by refining their $f$-divergence-based discrepancy and additionally introducing a new measure, $f$-domain discrepancy ($f$-DD). By removing the absolute value function and incorporating a scaling parameter, $f$-DD obtains novel target error and sample complexity bounds, allowing us to recover previous KL-based results and bridging the gap between algorithms and theory presented in Acuna et al. (2021). Using a localization technique, we also develop a fast-rate generalization bound. Empirical results demonstrate the superior performance of $f$-DD-based learning algorithms over previous works in popular UDA benchmarks.
- Abstract(参考訳): 教師なしドメイン適応(UDA)は、機械学習における分散シフトに対処する上で重要な役割を果たす。
本研究では,Acuna et al (2021) で提案されている UDA の理論的基礎を,$f$-divergence-based discrepancy を改良し,さらに$f$-domain discrepancy (f$-DD) という新たな尺度を導入することにより改善する。
絶対値関数を除去し、スケーリングパラメータを組み込むことで、$f$-DDは、新しいターゲットエラーとサンプルの複雑さ境界を求め、KLに基づく以前の結果を復元し、Acuna et al (2021)で提示されたアルゴリズムと理論のギャップを埋めることを可能にする。
ローカライゼーション手法を用いて、高速な一般化境界も開発する。
実験結果から,従来のUDAベンチマークよりも$f$-DDベースの学習アルゴリズムの方が優れた性能を示した。
関連論文リスト
- Improving Domain Adaptation Through Class Aware Frequency Transformation [15.70058524548143]
Unsupervised Domain Adaptation (UDA)アルゴリズムのほとんどは、ラベル付きソースと非ラベル付きターゲットドメインの間のグローバルドメインシフトの削減に重点を置いている。
本稿では,従来の画像処理手法であるCAFT(Class Aware Frequency Transformation)に基づく新しい手法を提案する。
CAFTは、既存のUDAアルゴリズムの全体的な性能を改善するために、擬似ラベルに基づく一貫した低周波スワップを使用する。
論文 参考訳(メタデータ) (2024-07-28T18:16:41Z) - Adversarial Reweighting with $α$-Power Maximization for Domain Adaptation [56.859005008344276]
我々は、$alpha$-Power Maximization (ARPM) を用いたAdversarial Reweightingと呼ばれる新しいアプローチを提案する。
本稿では,ソースプライマリなクラスサンプルを特定するために,逆向きにソースドメインデータを再重み付けすることを学習する,新しい逆方向再重み付けモデルを提案する。
提案手法は最近のPDA法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-26T09:29:55Z) - Gradual Domain Adaptation: Theory and Algorithms [15.278170387810409]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインからラベルなしターゲットドメインへのモデルをワンオフで適応する。
本研究ではまず,GDAアルゴリズムである漸進的な自己学習を理論的に解析し,より優れた一般化バウンダリを提供する。
我々は、$textbfG$enerative Gradual D$textbfO$main $textbfA$daptation with Optimal $textbfT$ransport (GOAT)を提案する。
論文 参考訳(メタデータ) (2023-10-20T23:02:08Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
線形関数近似による強化学習と,コスト関数の逆変化について検討した。
本稿では,未知のダイナミクスと帯域幅フィードバックの一般設定に挑戦する,計算効率のよいポリシ最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T17:26:39Z) - IT-RUDA: Information Theory Assisted Robust Unsupervised Domain
Adaptation [7.225445443960775]
トレイン(ソース)とテスト(ターゲット)データセット間の分散シフトは、マシンラーニングアプリケーションで発生する一般的な問題である。
UDA技術はラベル豊富なソースドメインからラベルのないターゲットドメインへの知識伝達を行う。
ソースまたはターゲットデータセットのいずれかに存在するアウトリーチは、実際にUDAを使用する場合、さらなる課題をもたらす可能性がある。
論文 参考訳(メタデータ) (2022-10-24T04:33:52Z) - E-ADDA: Unsupervised Adversarial Domain Adaptation Enhanced by a New
Mahalanobis Distance Loss for Smart Computing [25.510639595356597]
スマートコンピューティングでは、特定のタスクのためのトレーニングサンプルのラベルが常に豊富であるとは限らない。
本稿では,Mahalanobis 距離損失の新たなバリエーションと分布外検出サブルーチンを併用した新しい UDA アルゴリズム TextitE-ADDA を提案する。
音響モードでは、E-ADDAはf1スコアで測定されたいくつかの最先端のUDAアルゴリズムを最大29.8%上回っている。
コンピュータビジョンのモダリティにおいて、評価結果は、人気UDAにおける新しい最先端性能を実現することを示唆している。
論文 参考訳(メタデータ) (2022-01-24T23:20:55Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
教師なしのドメイン適応は、トレーニング中、ターゲットドメイン内のラベルなしデータにアクセス可能な、多くの機械学習アプリケーションで使用されている。
領域適応のための新しい一般化法を導出し、f-発散体の変分的特徴に基づく分布間の相違性の新しい尺度を利用する。
論文 参考訳(メタデータ) (2021-06-21T18:21:09Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
一段階の物体検出器は、分類損失と局所化損失を同時に最適化することによって訓練される。
前者は、多数のアンカーのため、非常に前景と後方のアンカーの不均衡に悩まされる。
本稿では,一段検知器の分類タスクをランキングタスクに置き換える新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-08-17T13:22:01Z) - Rethinking Distributional Matching Based Domain Adaptation [111.15106414932413]
ドメイン適応(DA)は、ラベル付きソースドメインでトレーニングされた予測モデルをラベル付きターゲットドメインに転送するテクニックである。
最も一般的なDAアルゴリズムは、分散マッチング(DM)に基づいている。
本稿では,まずDMに基づく手法の限界を体系的に分析し,さらに現実的なドメインシフトを持つ新しいベンチマークを構築する。
論文 参考訳(メタデータ) (2020-06-23T21:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。