論文の概要: A General Framework for Learning from Weak Supervision
- arxiv url: http://arxiv.org/abs/2402.01922v1
- Date: Fri, 2 Feb 2024 21:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 23:27:45.075199
- Title: A General Framework for Learning from Weak Supervision
- Title(参考訳): 弱い監督から学ぶための一般的な枠組み
- Authors: Hao Chen, Jindong Wang, Lei Feng, Xiang Li, Yidong Wang, Xing Xie,
Masashi Sugiyama, Rita Singh, Bhiksha Raj
- Abstract要約: 本稿では、新しいアルゴリズムを用いて、弱監督(GLWS)から学習するための一般的な枠組みを紹介する。
GLWSの中心は期待最大化(EM)の定式化であり、様々な弱い監督源を順応的に収容している。
また,EM計算要求を大幅に単純化する高度なアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 97.4298482689398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weakly supervised learning generally faces challenges in applicability to
various scenarios with diverse weak supervision and in scalability due to the
complexity of existing algorithms, thereby hindering the practical deployment.
This paper introduces a general framework for learning from weak supervision
(GLWS) with a novel algorithm. Central to GLWS is an Expectation-Maximization
(EM) formulation, adeptly accommodating various weak supervision sources,
including instance partial labels, aggregate statistics, pairwise observations,
and unlabeled data. We further present an advanced algorithm that significantly
simplifies the EM computational demands using a Non-deterministic Finite
Automaton (NFA) along with a forward-backward algorithm, which effectively
reduces time complexity from quadratic or factorial often required in existing
solutions to linear scale. The problem of learning from arbitrary weak
supervision is therefore converted to the NFA modeling of them. GLWS not only
enhances the scalability of machine learning models but also demonstrates
superior performance and versatility across 11 weak supervision scenarios. We
hope our work paves the way for further advancements and practical deployment
in this field.
- Abstract(参考訳): 弱い教師付き学習は、一般的に、多様な弱い監督を伴う様々なシナリオに適用性や、既存のアルゴリズムの複雑さによるスケーラビリティの問題に直面し、実際の展開を妨げる。
本稿では,新しいアルゴリズムを用いて,弱監視(glws)から学習するための汎用フレームワークを提案する。
GLWSの中心は期待最大化(EM)の定式化であり、サンプル部分ラベル、集約統計、ペアワイズ観測、ラベルなしデータなど、様々な弱い監督ソースを順調に収容している。
さらに,非決定性有限オートマトン(nfa)とフォワードバックワードアルゴリズムを用いてem計算要求を大幅に単純化する高度なアルゴリズムを提案する。
したがって、任意の弱監督から学習する問題は、それらのNFAモデリングに変換される。
GLWSは機械学習モデルのスケーラビリティを向上するだけでなく、11の弱い監視シナリオで優れたパフォーマンスと汎用性を示す。
この分野でのさらなる進歩と実践的な展開の道を開くことを願っています。
関連論文リスト
- The Power of Resets in Online Reinforcement Learning [73.64852266145387]
ローカルシミュレータアクセス(あるいはローカルプランニング)を用いたオンライン強化学習を通してシミュレータのパワーを探求する。
カバー性が低いMPPは,Qstar$-realizabilityのみのサンプル効率で学習可能であることを示す。
ローカルシミュレーターアクセス下では, 悪名高いExogenous Block MDP問題が抽出可能であることを示す。
論文 参考訳(メタデータ) (2024-04-23T18:09:53Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Learning Sparse Graphon Mean Field Games [26.405495663998828]
グラフィオン平均フィールドゲーム(GMFG)は、他の方法では難解なMARL問題のスケーラブルな解析を可能にする。
本稿では,グラフ理論的概念である$Lp$Graphons を利用する LPGMFGs という,GMFGs の新たな定式化を提案する。
これは、様々な応用領域で実証的に観測され、標準のグラモンでは捉えられないパワーローネットワークを含む。
論文 参考訳(メタデータ) (2022-09-08T15:35:42Z) - A Novel Plug-and-Play Approach for Adversarially Robust Generalization [38.72514422694518]
本稿では,MLモデルを摂動テストデータから保護するために,逆向きに堅牢なトレーニングを採用する頑健なフレームワークを提案する。
私たちの貢献は、計算学と統計学の両方の観点から見ることができます。
論文 参考訳(メタデータ) (2022-08-19T17:02:55Z) - Automatic Rule Induction for Efficient Semi-Supervised Learning [56.91428251227253]
半教師付き学習は、少量のラベル付きデータからNLPモデルを一般化できることを約束している。
事前訓練されたトランスモデルはブラックボックス相関エンジンとして機能し、説明が困難であり、時には信頼性に欠ける振る舞いをする。
本稿では,これらの課題に,簡易かつ汎用的なフレームワークであるAutomatic Rule Injection (ARI) を用いて対処することを提案する。
論文 参考訳(メタデータ) (2022-05-18T16:50:20Z) - Exploring Viable Algorithmic Options for Learning from Demonstration
(LfD): A Parameterized Complexity Approach [0.0]
本稿では,パラメータ化複雑性解析を用いて,アルゴリズムの選択肢を体系的に探索する方法を示す。
環境、実演、ポリシーに対する多くの(しばしば同時に)制限に対して、我々の問題は、一般的にも、あるいは相対的に、効率的に解決できないことを示す。
論文 参考訳(メタデータ) (2022-05-10T15:54:06Z) - On the Difficulty of Generalizing Reinforcement Learning Framework for
Combinatorial Optimization [6.935838847004389]
現実の応用とグラフ上の組合せ最適化問題(COP)は、コンピュータサイエンスにおける標準的な課題である。
このアプローチの基本原理は、ノードのローカル情報とグラフ構造化データの両方を符号化するグラフニューラルネットワーク(GNN)をデプロイすることである。
我々は,クラウド上のセキュリティ対応電話機のクローン割り当てを古典的二次代入問題 (QAP) として,深層RLモデルが他の難題の解法に一般的に適用可能であるか否かを調査する。
論文 参考訳(メタデータ) (2021-08-08T19:12:04Z) - Unsupervised Learning for Robust Fitting:A Reinforcement Learning
Approach [25.851792661168698]
堅牢なモデルフィッティングを解決するための新しいフレームワークを紹介します。
他の方法とは異なり、私たちの仕事は基本的な入力機能に無知です。
実験により,本手法が既存の学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-03-05T07:14:00Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
データから制約をマイニングするための一般的なフレームワークを提案する。
特に、構造化された出力予測の推論を整数線形プログラミング(ILP)問題とみなす。
提案手法は,9×9のスドクパズルの解法を学習し,基礎となるルールを提供することなく,例からツリー問題を最小限に分散させることが可能であることを示す。
論文 参考訳(メタデータ) (2020-06-18T20:09:53Z) - Provably Efficient Exploration for Reinforcement Learning Using
Unsupervised Learning [96.78504087416654]
強化学習(RL)問題における効率的な探索に教師なし学習を用い,本パラダイムが有効であるかどうかを考察する。
本稿では,教師なし学習アルゴリズムと非線形表RLアルゴリズムという,2つのコンポーネント上に構築された汎用的なアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-15T19:23:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。