Online Uniform Sampling: Randomized Learning-Augmented Approximation Algorithms with Application to Digital Health
- URL: http://arxiv.org/abs/2402.01995v6
- Date: Sat, 19 Oct 2024 04:39:53 GMT
- Title: Online Uniform Sampling: Randomized Learning-Augmented Approximation Algorithms with Application to Digital Health
- Authors: Xueqing Liu, Kyra Gan, Esmaeil Keyvanshokooh, Susan Murphy,
- Abstract summary: We study the novel problem of online uniform sampling (OUS), where the goal is to distribute a sampling budget uniformly across unknown decision times.
In the OUS problem, the algorithm is given a budget $b$ and a time horizon $T$, and an adversary then chooses a value $tau* in [b,T]$, which is revealed to the algorithm online.
We present the first randomized algorithm designed for this problem and subsequently extend it to incorporate learning augmentation.
- Score: 3.534690532561709
- License:
- Abstract: Motivated by applications in digital health, this work studies the novel problem of online uniform sampling (OUS), where the goal is to distribute a sampling budget uniformly across unknown decision times. In the OUS problem, the algorithm is given a budget $b$ and a time horizon $T$, and an adversary then chooses a value $\tau^* \in [b,T]$, which is revealed to the algorithm online. At each decision time $i \in [\tau^*]$, the algorithm must determine a sampling probability that maximizes the budget spent throughout the horizon, respecting budget constraint $b$, while achieving as uniform a distribution as possible over $\tau^*$. We present the first randomized algorithm designed for this problem and subsequently extend it to incorporate learning augmentation. We provide worst-case approximation guarantees for both algorithms, and illustrate the utility of the algorithms through both synthetic experiments and a real-world case study involving the HeartSteps mobile application. Our numerical results show strong empirical average performance of our proposed randomized algorithms against previously proposed heuristic solutions.
Related papers
- Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED) is a highly effective approach to the multi-armed bandit problem.
It has been observed to empirically outperform UCB-based algorithms and Thompson Sampling.
We present novel linear versions of the IMED algorithm, which we call the family of LinIMED algorithms.
arXiv Detail & Related papers (2024-05-24T04:11:58Z) - On Universally Optimal Algorithms for A/B Testing [49.429419538826444]
We study the problem of best-arm identification with fixed budget in multi-armed bandits with Bernoulli rewards.
For the problem with two arms, also known as the A/B testing problem, we prove that there is no algorithm that performs as well as the algorithm sampling each arm equally.
arXiv Detail & Related papers (2023-08-23T08:38:53Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
We study the Differentially private (DP) convex optimization problem with streaming data sampled from a distribution and arrives sequentially.
We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms.
Our algorithm achieves in linear time the optimal excess risk when $1pleq 2$ and the state-of-the-art excess risk meeting the non-private lower ones when $2pleqinfty$.
arXiv Detail & Related papers (2022-06-16T12:09:47Z) - An optimal scheduled learning rate for a randomized Kaczmarz algorithm [1.2183405753834562]
We study how the learning rate affects the performance of a relaxed randomized Kaczmarz algorithm for solving $A x approx b + varepsilon$.
arXiv Detail & Related papers (2022-02-24T17:38:24Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Combining K-means type algorithms with Hill Climbing for Joint
Stratification and Sample Allocation Designs [0.0]
This is a sample problem in which we search for the optimal stratification from the set of all possible stratifications of basic strata.
evaluating the cost of each solution is expensive.
We compare the above multi-stage combination of algorithms with three recent algorithms and report the solution costs, evaluation times and training times.
arXiv Detail & Related papers (2021-08-18T08:41:58Z) - A PAC algorithm in relative precision for bandit problem with costly
sampling [0.0]
We first propose a naive bandit algorithm for obtaining a probably approximately correct (PAC) solution to this discrete optimization problem in relative precision.
We also propose an adaptive bandit algorithm which provides a PAC-solution with the same guarantees.
arXiv Detail & Related papers (2020-07-30T09:22:25Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.