論文の概要: Affordable Generative Agents
- arxiv url: http://arxiv.org/abs/2402.02053v2
- Date: Wed, 28 Aug 2024 04:04:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 21:09:20.832161
- Title: Affordable Generative Agents
- Title(参考訳): 有効生成剤
- Authors: Yangbin Yu, Qin Zhang, Junyou Li, Qiang Fu, Deheng Ye,
- Abstract要約: AGA(Affordable Generative Agents)は、エージェント環境とエージェント間の両方のレベルで、信頼性と低コストのインタラクションの生成を可能にするフレームワークである。
私たちのコードは、https://github.com/AffordableGenerative-Agents/Affordable-Generative-Agentsで公開されています。
- 参考スコア(独自算出の注目度): 16.372072265248192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models (LLMs) has significantly advanced the simulation of believable interactive agents. However, the substantial cost on maintaining the prolonged agent interactions poses challenge over the deployment of believable LLM-based agents. Therefore, in this paper, we develop Affordable Generative Agents (AGA), a framework for enabling the generation of believable and low-cost interactions on both agent-environment and inter-agents levels. Specifically, for agent-environment interactions, we substitute repetitive LLM inferences with learned policies; while for inter-agent interactions, we model the social relationships between agents and compress auxiliary dialogue information. Extensive experiments on multiple environments show the effectiveness and efficiency of our proposed framework. Also, we delve into the mechanisms of emergent believable behaviors lying in LLM agents, demonstrating that agents can only generate finite behaviors in fixed environments, based upon which, we understand ways to facilitate emergent interaction behaviors. Our code is publicly available at: https://github.com/AffordableGenerativeAgents/Affordable-Generative-Agents.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は,対話型エージェントのシミュレーションを大幅に進歩させた。
しかし、長期間にわたるエージェントの相互作用を維持するためのかなりのコストは、信じられないLSMベースのエージェントの配置に挑戦する。
そこで本稿では,エージェント環境とエージェント間の両方のレベルで,信頼性と低コストのインタラクション生成を可能にするフレームワークであるAffordable Generative Agents (AGA) を開発する。
具体的には,エージェントと環境の相互作用において,反復的LLM推論を学習ポリシーに置き換える。エージェント間相互作用ではエージェント間の社会的関係をモデル化し,補助対話情報を圧縮する。
複数の環境における大規模な実験により,提案手法の有効性と有効性を示した。
また, LLM エージェントに潜む創発的行動のメカニズムを解明し, エージェントが一定の環境下で有限な行動しか生成できないことを示す。
私たちのコードは、https://github.com/AffordableGenerative-Agents/Affordable-Generative-Agentsで公開されています。
関連論文リスト
- On the limits of agency in agent-based models [13.130587222524305]
エージェント・ベース・モデリング(ABM)は、環境の中で動作し相互作用するエージェントの集合をシミュレートすることで、複雑なシステムの振る舞いを理解しようとする。
大規模言語モデル(LLM)の最近の進歩は、ABMを強化する機会を与える。
我々は,AMMを数百万のエージェントに拡張するフレームワークであるAgentTorchを紹介する。
論文 参考訳(メタデータ) (2024-09-14T04:17:24Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - Procedural Adherence and Interpretability Through Neuro-Symbolic Generative Agents [0.9886108751871757]
本稿では,形式論理に基づくプログラム合成とLCMコンテンツ生成を組み合わせることで,生成エージェントの動作に対する手続き的順守と解釈可能性の保証を実現する。
手続き的付着と解釈可能性の利点を説明するために,エージェントに解釈可能な高レベル時間構造を強制するオートマトンを生成するためにテンポラルストリーム論理(TSL)を用いる。
論文 参考訳(メタデータ) (2024-02-24T21:36:26Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
本稿では,マルチエージェントインタラクションモデリング問題をマルチエージェント模倣学習フレームワークに実装する。
相関ポリシー(CoDAIL)を用いた分散型適応模倣学習アルゴリズムの開発
様々な実験により、CoDAILはデモレーターに近い複雑な相互作用をより良く再生できることが示されている。
論文 参考訳(メタデータ) (2020-01-04T17:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。