論文の概要: Enhancing Language Multi-Agent Learning with Multi-Agent Credit Re-Assignment for Interactive Environment Generalization
- arxiv url: http://arxiv.org/abs/2502.14496v1
- Date: Thu, 20 Feb 2025 12:26:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:02.142907
- Title: Enhancing Language Multi-Agent Learning with Multi-Agent Credit Re-Assignment for Interactive Environment Generalization
- Title(参考訳): 対話型環境一般化のためのマルチエージェント・クレジット再割り当てによる言語マルチエージェント学習の強化
- Authors: Zhitao He, Zijun Liu, Peng Li, May Fung, Ming Yan, Ji Zhang, Fei Huang, Yang Liu,
- Abstract要約: 我々は,新しいマルチエージェントクレジット再割り当て戦略を備えたマルチエージェント強化学習フレームワークであるCollabUIAgentsを提案する。
我々は,マルチエージェントシステムの性能と環境横断の一般化性を両立させることを実証した。
- 参考スコア(独自算出の注目度): 37.37641889714614
- License:
- Abstract: LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
- Abstract(参考訳): LLMをベースとしたエージェントは、モバイル操作やWebブラウジングなど、コンピュータ以外の分野など、インタラクティブな環境において大きな進歩を遂げている。
現在のマルチエージェントシステムは、単一エージェントと比較して、パフォーマンスが普遍的に優れているが、事前定義された役割と言語エージェントの一般化のための不適切な戦略のために、環境全体の一般化に苦慮している。
高い性能と優れた一般化を実現するという課題は、対話環境におけるマルチエージェントシステムの進歩を妨げている。
これらの課題に対処するため,環境に配慮した報酬よりもプロセス報酬をLLMに割り当てる,ロールフリーエージェントのポリシー間の一般化可能な協調行動を促進するための,新しいマルチエージェント・クレジット・アサインメント(CR)戦略を備えたマルチエージェント強化学習フレームワークであるCollabUIAgentsを提案する。
実験結果から,本フレームワークはマルチエージェントシステムの性能と環境横断の一般化性を向上することが示された。
さらに,我々の 7B パラメータシステムは,強力なクローズドソースモデルに匹敵する結果を得るとともに,CR を誘導する LLM も達成する。
また,環境の一般化に有効な粒状CR報酬の活用や,マルチエージェントシステムにおける学習済みLLMの調整に関する知見も提供する。
関連論文リスト
- Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
LLM(Large Language Model)ベースのエージェントは、幅広い汎用アプリケーションにわたる複雑なタスクの解決に顕著な成功を収めている。
しかしながら、それらのパフォーマンスは、専門産業や研究領域のようなコンテキスト固有のシナリオで劣化することが多い。
この課題に対処するため,本研究では,LLMエージェントの文脈適応性を高めるための体系的アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-18T15:07:06Z) - C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation [13.120930059424975]
C-3POは、レトリバーと大規模言語モデル間の通信を容易にするプロキシ中心のフレームワークである。
我々のフレームワークは、RAGパイプライン全体を協調的に最適化する3つの特殊エージェントを実装している。
論文 参考訳(メタデータ) (2025-02-10T07:04:32Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - Affordable Generative Agents [16.372072265248192]
AGA(Affordable Generative Agents)は、エージェント環境とエージェント間の両方のレベルで、信頼性と低コストのインタラクションの生成を可能にするフレームワークである。
私たちのコードは、https://github.com/AffordableGenerative-Agents/Affordable-Generative-Agentsで公開されています。
論文 参考訳(メタデータ) (2024-02-03T06:16:28Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。