論文の概要: Sample-Efficient Clustering and Conquer Procedures for Parallel
Large-Scale Ranking and Selection
- arxiv url: http://arxiv.org/abs/2402.02196v2
- Date: Tue, 13 Feb 2024 02:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 18:18:52.660278
- Title: Sample-Efficient Clustering and Conquer Procedures for Parallel
Large-Scale Ranking and Selection
- Title(参考訳): 並列大規模ランキング選択のためのサンプル効率の高いクラスタリングと探索手順
- Authors: Zishi Zhang, Yijie Peng
- Abstract要約: 並列コンピューティング環境では、相関ベースのクラスタリングは$mathcalO(p)$サンプル複雑性低減率を達成することができる。
ニューラルアーキテクチャ検索のような大規模AIアプリケーションでは、スクリーニングなしバージョンの手順が、サンプル効率の点で完全に順序づけられたベンチマークを驚くほど上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose novel "clustering and conquer" procedures for the parallel
large-scale ranking and selection (R&S) problem, which leverage correlation
information for clustering to break the bottleneck of sample efficiency. In
parallel computing environments, correlation-based clustering can achieve an
$\mathcal{O}(p)$ sample complexity reduction rate, which is the optimal
reduction rate theoretically attainable. Our proposed framework is versatile,
allowing for seamless integration of various prevalent R&S methods under both
fixed-budget and fixed-precision paradigms. It can achieve improvements without
the necessity of highly accurate correlation estimation and precise clustering.
In large-scale AI applications such as neural architecture search, a
screening-free version of our procedure surprisingly surpasses fully-sequential
benchmarks in terms of sample efficiency. This suggests that leveraging
valuable structural information, such as correlation, is a viable path to
bypassing the traditional need for screening via pairwise comparison--a step
previously deemed essential for high sample efficiency but problematic for
parallelization. Additionally, we propose a parallel few-shot clustering
algorithm tailored for large-scale problems.
- Abstract(参考訳): 本稿では,クラスタ化のための相関情報を利用してサンプル効率のボトルネックを解消する並列大規模ランキング選択(r&s)問題に対する新しい「クラスタ化と克服」手法を提案する。
並列コンピューティング環境では、相関ベースのクラスタリングは、理論的に達成可能な最適な還元率である$\mathcal{o}(p)$サンプル複雑性低減率を達成することができる。
提案するフレームワークは汎用性が高く,固定予算と固定精度の両方のパラダイムの下で,様々なR&S手法をシームレスに統合することができる。
高精度な相関推定と正確なクラスタリングを必要とせずに改善を実現することができる。
ニューラルアーキテクチャ検索のような大規模AIアプリケーションでは、スクリーニングなしバージョンの手順が、サンプル効率の点で完全に順序づけられたベンチマークを驚くほど上回っている。
これは、相関のような貴重な構造情報を活用することは、従来の対比較によるスクリーニングの必要性を回避するための有効な経路であることを示唆している。
さらに,大規模問題に適した並列数ショットクラスタリングアルゴリズムを提案する。
関連論文リスト
- Query-Efficient Correlation Clustering with Noisy Oracle [17.11782578276788]
共同マルチアーマッドバンド(PE-CMAB)における純粋探索のパラダイムに根ざしたオンライン学習問題の2つの新しい定式化を導入する。
我々は,サンプリング戦略と古典近似アルゴリズムを組み合わせるアルゴリズムを設計し,それらの理論的保証について検討する。
本研究は, PE-CMABの場合のクラスタリング時アルゴリズムの最初の例であり, 基礎となるオフライン最適化問題はNP-hardである。
論文 参考訳(メタデータ) (2024-02-02T13:31:24Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
一般関数近似に基づく汎用マルコフゲーム(MG)のためのマルチエージェント強化学習(MARL)について検討した。
汎用MGに対するマルチエージェントデカップリング係数(MADC)と呼ばれる新しい複雑性尺度を導入する。
我々のアルゴリズムは既存の研究に匹敵するサブリニアな後悔を与えることを示す。
論文 参考訳(メタデータ) (2023-10-10T01:39:04Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
既存のアプローチの多くは、クラスタリングに最適な類似性行列を学ぶために、複数の事前定義された類似性を直接融合する。
これらの問題に対処するために、アライメントを通してレイトフュージョンMVCを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:49:31Z) - Low-rank Optimal Transport: Approximation, Statistics and Debiasing [51.50788603386766]
フロゼットボン2021ローランで提唱された低ランク最適輸送(LOT)アプローチ
LOTは興味のある性質と比較した場合、エントロピー正則化の正当な候補と見なされる。
本稿では,これらの領域のそれぞれを対象とし,計算OTにおける低ランクアプローチの影響を補強する。
論文 参考訳(メタデータ) (2022-05-24T20:51:37Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
本稿では,バンディットフィードバックを用いたオンラインクラスタリングの問題点について考察する。
これは、NPハード重み付きクラスタリング問題をサブルーチンとして解決する必要性を回避するための、シーケンシャルなテストのための新しい停止規則を含む。
合成および実世界のデータセットの広範なシミュレーションを通して、BOCの性能は下界と一致し、非適応的ベースラインアルゴリズムよりも大幅に優れることを示す。
論文 参考訳(メタデータ) (2022-02-09T06:05:05Z) - Shift of Pairwise Similarities for Data Clustering [7.462336024223667]
正規化項がクラスタの2乗サイズの和である場合を考察し、ペアの類似性の適応正規化に一般化する。
これは、ペアの類似性を(適切に)シフトさせ、それらのうちのいくつかを負にする可能性がある。
そこで我々は,新しいクラスタリング問題を解くために,高速な理論的収束率を持つ効率的な局所探索最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-25T16:55:07Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Transductive Few-Shot Learning: Clustering is All You Need? [31.21306826132773]
そこで本研究では,プロトタイプをベースとした超越的数ショット学習の汎用的定式化について検討する。
提案手法は, 精度と最適化の観点から, 大きな問題にスケールアップしながら, 競争性能を向上する。
驚いたことに、私たちの一般的なモデルは、最先端の学習と比較して、すでに競争力のあるパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2021-06-16T16:14:01Z) - Linear regression with partially mismatched data: local search with
theoretical guarantees [9.398989897176953]
本稿では,予測と応答のペアが部分的に一致しない線形回帰の重要な変種について検討する。
最適化定式化を用いて、基礎となる回帰係数とミスマッチに対応する置換を同時に学習する。
我々は,局所探索アルゴリズムが線形速度でほぼ最適解に収束することを証明した。
論文 参考訳(メタデータ) (2021-06-03T23:32:12Z) - Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions [0.0]
スライスサンプリング (Slice Sampling) は、最小ハンドチューニングで目標分布の特性に適応するマルコフ連鎖モンテカルロアルゴリズムとして登場した。
本稿では,初期長さ尺度を適応的に調整することで,そのような困難を回避できるアルゴリズムであるEnsemble Slice Sampling(ESS)を紹介する。
これらのアフィン不変アルゴリズムは簡単に構築でき、手作業で調整する必要がなく、並列計算環境で容易に実装できる。
論文 参考訳(メタデータ) (2020-02-14T19:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。