論文の概要: Shift of Pairwise Similarities for Data Clustering
- arxiv url: http://arxiv.org/abs/2110.13103v1
- Date: Mon, 25 Oct 2021 16:55:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 15:07:11.362509
- Title: Shift of Pairwise Similarities for Data Clustering
- Title(参考訳): データクラスタリングにおけるペアワイズ類似性のシフト
- Authors: Morteza Haghir Chehreghani
- Abstract要約: 正規化項がクラスタの2乗サイズの和である場合を考察し、ペアの類似性の適応正規化に一般化する。
これは、ペアの類似性を(適切に)シフトさせ、それらのうちのいくつかを負にする可能性がある。
そこで我々は,新しいクラスタリング問題を解くために,高速な理論的収束率を持つ効率的な局所探索最適化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.462336024223667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several clustering methods (e.g., Normalized Cut and Ratio Cut) divide the
Min Cut cost function by a cluster-dependent factor (e.g., the size or the
degree of the clusters), in order to yield a more balanced partitioning. We,
instead, investigate adding such regularizations to the original cost function.
We first consider the case where the regularization term is the sum of the
squared size of the clusters, and then generalize it to adaptive regularization
of the pairwise similarities. This leads to shifting (adaptively) the pairwise
similarities which might make some of them negative. We then study the
connection of this method to Correlation Clustering and then propose an
efficient local search optimization algorithm with fast theoretical convergence
rate to solve the new clustering problem. In the following, we investigate the
shift of pairwise similarities on some common clustering methods, and finally,
we demonstrate the superior performance of the method by extensive experiments
on different datasets.
- Abstract(参考訳): いくつかのクラスタリング手法(例えば正規化カットと比率カット)は、よりバランスの取れた分割を生成するために、ミンカットコスト関数をクラスタに依存した係数(例えば、クラスタのサイズや程度)で分割する。
代わりに、原価関数にそのような正規化を加えることを検討する。
まず、正則化項がクラスタの正方形の大きさの和である場合を考え、それからペアの類似性の適応正則化に一般化する。
これにより、ペア間の類似性が(適応的に)シフトし、それらのいくつかが否定的になる可能性がある。
次に,この手法の相関クラスタリングへの接続について検討し,高速な理論的収束率を持つ効率的な局所探索最適化アルゴリズムを提案する。
本稿では,いくつかの共通クラスタリング手法におけるペアワイズ類似性の変化について検討し,さらに,異なるデータセットに対する広範な実験により,提案手法の優れた性能を示す。
関連論文リスト
- Linear time Evidence Accumulation Clustering with KMeans [0.0]
この研究は、平均的なリンククラスタリングの振る舞いを模倣するトリックを記述する。
分割の密度を効率よく計算する方法を見つけ、二次的な複雑さから線形的な複雑さへのコストを削減した。
k平均結果は、計算コストを低く保ちながら、NMIの観点からは、最先端の技術に匹敵する。
論文 参考訳(メタデータ) (2023-11-15T14:12:59Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - A Computational Theory and Semi-Supervised Algorithm for Clustering [0.0]
半教師付きクラスタリングアルゴリズムを提案する。
クラスタリング法のカーネルは、Mohammadの異常検出アルゴリズムである。
結果は、合成および実世界のデータセットで示される。
論文 参考訳(メタデータ) (2023-06-12T09:15:58Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Near-Optimal Comparison Based Clustering [7.930242839366938]
提案手法は, ほぼ最適な比較数を用いて, 植え付けクラスタリングを復元できることを示す。
理論的知見を実証的に検証し,実データ上での手法の良好な振る舞いを実証する。
論文 参考訳(メタデータ) (2020-10-08T12:03:13Z) - Biclustering with Alternating K-Means [5.089110111757978]
本稿では,経験的クラスタリングリスクを最小限に抑えるというアイデアに基づいて,ビクラスタリング問題の新たな定式化について述べる。
カラムと行間のk-meansクラスタリングアルゴリズムの適応バージョンを交互に使用することにより,局所最小値を求める,単純で斬新なアルゴリズムを提案する。
その結果,本アルゴリズムは,データ中の有意義な構造を検知し,様々な設定や状況において競合する2クラスタリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-09-09T20:15:24Z) - Point-Set Kernel Clustering [11.093960688450602]
本稿では,オブジェクトとオブジェクトの集合との類似性を計算する,ポイントセットカーネルと呼ばれる新しい類似度尺度を提案する。
新たなクラスタリング手法は,大規模データセットを扱えるように,効率的かつ効率的であることを示す。
論文 参考訳(メタデータ) (2020-02-14T00:00:03Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。