論文の概要: Estimation of conditional average treatment effects on distributed data: A privacy-preserving approach
- arxiv url: http://arxiv.org/abs/2402.02672v2
- Date: Sat, 25 May 2024 08:15:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 07:44:38.366273
- Title: Estimation of conditional average treatment effects on distributed data: A privacy-preserving approach
- Title(参考訳): 分散データに対する条件平均処理効果の推定:プライバシー保護アプローチ
- Authors: Yuji Kawamata, Ryoki Motai, Yukihiko Okada, Akira Imakura, Tetsuya Sakurai,
- Abstract要約: 条件平均処理効果(CATE)は、複数のパーティに分散したデータが集中できる場合、高精度に推定できる。
プライバシー上の懸念から、このようなデータを集約することは困難である。
分散データのプライバシ保存を伴うCATEモデルを推定する手法として,データ協調型ダブル機械学習を提案する。
- 参考スコア(独自算出の注目度): 6.798254568821052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of conditional average treatment effects (CATEs) is an important topic in sciences. CATEs can be estimated with high accuracy if distributed data across multiple parties can be centralized. However, it is difficult to aggregate such data owing to privacy concerns. To address this issue, we proposed data collaboration double machine learning, a method that can estimate CATE models with privacy preservation of distributed data, and evaluated the method through simulations. Our contributions are summarized in the following three points. First, our method enables estimation and testing of semi-parametric CATE models without iterative communication on distributed data. Semi-parametric CATE models enable estimation and testing that is more robust to model mis-specification than parametric models. Second, our method enables collaborative estimation between multiple time points and different parties. Third, our method performed equally or better than other methods in simulations using synthetic, semi-synthetic and real-world datasets.
- Abstract(参考訳): 条件付き平均治療効果(CATE)の推定は、科学において重要なトピックである。
複数のパーティにわたる分散データが集中できる場合、CATEは高い精度で推定できる。
しかし、プライバシー上の懸念から、このようなデータを集約することは困難である。
この問題に対処するため,分散データのプライバシ保存を伴うCATEモデルを推定し,シミュレーションにより評価する手法として,データコラボレーションダブル機械学習を提案する。
私たちの貢献は以下の3つの点で要約されている。
まず,分散データ上で反復的な通信を行うことなく,半パラメトリックCATEモデルの推定とテストを可能にする。
半パラメトリックCATEモデルは、パラメトリックモデルよりも誤特定をモデル化するのに堅牢な推定とテストを可能にする。
第2に、複数の時間点と異なる当事者間の協調的な推定を可能にする。
第3に,本手法は,合成,半合成,実世界のデータセットを用いたシミュレーションにおいて,他の手法と等しくあるいは同等に動作する。
関連論文リスト
- Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Likelihood-Based Methods Improve Parameter Estimation in Opinion
Dynamics Models [6.138671548064356]
エージェント・ベース・モデル(ABM)におけるパラメータ推定の最大解法は、典型的なシミュレーション・ベース・アプローチよりも優れていることを示す。
対照的に、確率に基づくアプローチは、統計的に原理化された方法で未知のパラメータを観測データに接続する確率関数を導出する。
実験の結果,最大推定値の精度は最大4倍に向上し,計算時間を最大200倍に短縮できることがわかった。
論文 参考訳(メタデータ) (2023-10-04T12:29:37Z) - Meta-learning for heterogeneous treatment effect estimation with
closed-form solvers [30.343569752920754]
本稿では,いくつかの観測データから条件平均処理効果(CATE)を推定するメタラーニング手法を提案する。
提案手法は,複数のタスクからCATEを推定する方法を学習し,未知のタスクの知識を利用する。
論文 参考訳(メタデータ) (2023-05-19T00:07:38Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
多変量回帰問題に対する新しい非パラメトリック混合実験モデルを提案する。
条件付きモデルを用いて、サンプル外入力の予測は、観測された各データポイントと類似性に基づいて行われる。
混合物のパラメータと距離測定値に基づいて後部推論を行う。
論文 参考訳(メタデータ) (2020-12-03T18:08:30Z) - Distributed Learning of Finite Gaussian Mixtures [21.652015112462]
有限ガウス混合系の分散学習における分割・対数アプローチについて検討する。
新しい推定器は整合性を示し、いくつかの一般的な条件下ではルート-nの整合性を保持する。
シミュレーションおよび実世界のデータに基づく実験により、提案手法はグローバル推定器と同等の統計的性能を有することが示された。
論文 参考訳(メタデータ) (2020-10-20T16:17:47Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。