Estimation of conditional average treatment effects on distributed confidential data
- URL: http://arxiv.org/abs/2402.02672v3
- Date: Tue, 10 Sep 2024 06:17:16 GMT
- Title: Estimation of conditional average treatment effects on distributed confidential data
- Authors: Yuji Kawamata, Ryoki Motai, Yukihiko Okada, Akira Imakura, Tetsuya Sakurai,
- Abstract summary: conditional average treatment effects (CATEs) can be estimated with high accuracy if distributed data across multiple parties can be centralized.
It is difficult to aggregate such data owing to confidential or privacy concerns.
We proposed data collaboration double machine learning, a method that can estimate CATE models from privacy-preserving fusion data constructed from distributed data.
- Score: 6.798254568821052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of conditional average treatment effects (CATEs) is an important topic in sciences. CATEs can be estimated with high accuracy if distributed data across multiple parties can be centralized. However, it is difficult to aggregate such data owing to confidential or privacy concerns. To address this issue, we proposed data collaboration double machine learning, a method that can estimate CATE models from privacy-preserving fusion data constructed from distributed data, and evaluated our method through simulations. Our contributions are summarized in the following three points. First, our method enables estimation and testing of semi-parametric CATE models without iterative communication on distributed data. Our semi-parametric CATE method enable estimation and testing that is more robust to model mis-specification than parametric methods. Second, our method enables collaborative estimation between multiple time points and different parties through the accumulation of a knowledge base. Third, our method performed equally or better than other methods in simulations using synthetic, semi-synthetic and real-world datasets.
Related papers
- Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
We introduce a model-agnostic data augmentation method that imputes the counterfactual outcomes for a selected subset of individuals.
We use contrastive learning to learn a representation space and a similarity measure such that in the learned representation space close individuals identified by the learned similarity measure have similar potential outcomes.
This property ensures reliable imputation of counterfactual outcomes for the individuals with close neighbors from the alternative treatment group.
arXiv Detail & Related papers (2023-11-07T00:36:51Z) - Meta-learning for heterogeneous treatment effect estimation with
closed-form solvers [30.343569752920754]
This article proposes a meta-learning method for estimating the conditional average treatment effect (CATE) from a few observational data.
The proposed method learns how to estimate CATEs from multiple tasks and uses the knowledge for unseen tasks.
arXiv Detail & Related papers (2023-05-19T00:07:38Z) - Evaluating Causal Inference Methods [0.4588028371034407]
We introduce a deep generative model-based framework, Credence, to validate causal inference methods.
Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods.
arXiv Detail & Related papers (2022-02-09T00:21:22Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Noise-Resistant Deep Metric Learning with Probabilistic Instance
Filtering [59.286567680389766]
Noisy labels are commonly found in real-world data, which cause performance degradation of deep neural networks.
We propose Probabilistic Ranking-based Instance Selection with Memory (PRISM) approach for DML.
PRISM calculates the probability of a label being clean, and filters out potentially noisy samples.
arXiv Detail & Related papers (2021-08-03T12:15:25Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
We present a new non-parametric mixture-of-experts model for multivariate regression problems.
Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point.
Posterior inference is performed on the parameters of the mixture as well as the distance metric.
arXiv Detail & Related papers (2020-12-03T18:08:30Z) - Distributed Learning of Finite Gaussian Mixtures [21.652015112462]
We study split-and-conquer approaches for the distributed learning of finite Gaussian mixtures.
New estimator is shown to be consistent and retains root-n consistency under some general conditions.
Experiments based on simulated and real-world data show that the proposed split-and-conquer approach has comparable statistical performance with the global estimator.
arXiv Detail & Related papers (2020-10-20T16:17:47Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.