Denoising Time Cycle Modeling for Recommendation
- URL: http://arxiv.org/abs/2402.02718v1
- Date: Mon, 5 Feb 2024 04:28:08 GMT
- Title: Denoising Time Cycle Modeling for Recommendation
- Authors: Sicong Xie, Qunwei Li, Weidi Xu, Kaiming Shen, Shaohu Chen, Wenliang
Zhong
- Abstract summary: We argue that existing methods ignore the variety of temporal patterns of user behaviors.
We propose Denoising Time Cycle Modeling (DiCycle), a novel approach to denoise user behaviors.
DiCycle is able to explicitly model diverse time cycle patterns for recommendation.
- Score: 19.62210742613065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, modeling temporal patterns of user-item interactions have attracted
much attention in recommender systems. We argue that existing methods ignore
the variety of temporal patterns of user behaviors. We define the subset of
user behaviors that are irrelevant to the target item as noises, which limits
the performance of target-related time cycle modeling and affect the
recommendation performance. In this paper, we propose Denoising Time Cycle
Modeling (DiCycle), a novel approach to denoise user behaviors and select the
subset of user behaviors that are highly related to the target item. DiCycle is
able to explicitly model diverse time cycle patterns for recommendation.
Extensive experiments are conducted on both public benchmarks and a real-world
dataset, demonstrating the superior performance of DiCycle over the
state-of-the-art recommendation methods.
Related papers
- Modeling the Heterogeneous Duration of User Interest in Time-Dependent Recommendation: A Hidden Semi-Markov Approach [11.392605386729699]
We propose a hidden semi-Markov model to track the change of users' interests.
This model allows for capturing the different durations of user stays in a (latent) interest state.
We derive an algorithm to estimate the parameters and predict users' actions.
arXiv Detail & Related papers (2024-12-15T09:17:45Z) - Diffusion Action Segmentation [63.061058214427085]
We propose a novel framework via denoising diffusion models, which shares the same inherent spirit of such iterative refinement.
In this framework, action predictions are iteratively generated from random noise with input video features as conditions.
arXiv Detail & Related papers (2023-03-31T10:53:24Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - TEA: A Sequential Recommendation Framework via Temporally Evolving
Aggregations [12.626079984394766]
We propose a novel sequential recommendation framework based on dynamic user-item heterogeneous graphs.
We exploit the conditional random field to aggregate the heterogeneous graphs and user behaviors for probability estimation.
We provide scalable and flexible implementations of the proposed framework.
arXiv Detail & Related papers (2021-11-14T15:54:23Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Sequence Adaptation via Reinforcement Learning in Recommender Systems [8.909115457491522]
We propose the SAR model, which learns the sequential patterns and adjusts the sequence length of user-item interactions in a personalized manner.
In addition, we optimize a joint loss function to align the accuracy of the sequential recommendations with the expected cumulative rewards of the critic network.
Our experimental evaluation on four real-world datasets demonstrates the superiority of our proposed model over several baseline approaches.
arXiv Detail & Related papers (2021-07-31T13:56:46Z) - Denoising User-aware Memory Network for Recommendation [11.145186013006375]
We propose a novel CTR model named denoising user-aware memory network (DUMN)
DUMN uses the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback.
Experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2021-07-12T14:39:36Z) - MEANTIME: Mixture of Attention Mechanisms with Multi-temporal Embeddings
for Sequential Recommendation [12.386304516106854]
Self-attention based models have achieved state-of-the-art performance in sequential recommendation task.
These models rely on a simple positional embedding to exploit the sequential nature of the user's history.
We propose MEANTIME which employs multiple types of temporal embeddings designed to capture various patterns from the user's behavior sequence.
arXiv Detail & Related papers (2020-08-19T05:32:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.