論文の概要: Rethinking Explainable Machine Learning as Applied Statistics
- arxiv url: http://arxiv.org/abs/2402.02870v4
- Date: Mon, 24 Mar 2025 18:52:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 19:42:56.43923
- Title: Rethinking Explainable Machine Learning as Applied Statistics
- Title(参考訳): 応用統計学としての説明可能な機械学習の再考
- Authors: Sebastian Bordt, Eric Raidl, Ulrike von Luxburg,
- Abstract要約: 説明可能な機械学習は、その並列性を応用統計と認識する必要がある、と我々は主張する。
研究論文では、これがほとんど議論されていないという事実が、現在の文献の主な欠点の1つである。
- 参考スコア(独自算出の注目度): 9.03268085547399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly growing literature on explanation algorithms, it often remains unclear what precisely these algorithms are for and how they should be used. In this position paper, we argue for a novel and pragmatic perspective: Explainable machine learning needs to recognize its parallels with applied statistics. Concretely, explanations are statistics of high-dimensional functions, and we should think about them analogously to traditional statistical quantities. Among others, this implies that we must think carefully about the matter of interpretation, or how the explanations relate to intuitive questions that humans have about the world. The fact that this is scarcely being discussed in research papers is one of the main drawbacks of the current literature. Luckily, the analogy between explainable machine learning and applied statistics suggests fruitful ways for how research practices can be improved.
- Abstract(参考訳): 説明アルゴリズムに関する論文が急速に増えている中で、これらのアルゴリズムが何のためにあるのか、どのように使うべきかはよく分かっていない。
説明可能な機械学習は、その並列性を応用統計と認識する必要がある。
具体的には、説明は高次元関数の統計であり、従来の統計量と類似して考えるべきである。
このことは、解釈の問題や、その説明が人間が世界について持っている直感的な疑問にどのように関係しているかを慎重に考える必要があることを意味している。
研究論文では、これがほとんど議論されていないという事実が、現在の文献の主な欠点の1つである。
幸いなことに、説明可能な機械学習と応用統計の類似は、研究の実践を改善するための実りある方法を示している。
関連論文リスト
- From Model Explanation to Data Misinterpretation: Uncovering the Pitfalls of Post Hoc Explainers in Business Research [3.7209396288545338]
ビジネス研究では、データに関する推論にポストホックな説明が使われる傾向が増えている。
この論文の最終的な目標は、機械学習モデルのポストホックな説明を、潜在的に誤った洞察とデータの理解に翻訳しないように、ビジネス研究者に警告することである。
論文 参考訳(メタデータ) (2024-08-30T03:22:35Z) - Machine learning and information theory concepts towards an AI
Mathematician [77.63761356203105]
人工知能の現在の最先端技術は、特に言語習得の点で印象的だが、数学的推論の点ではあまり重要ではない。
このエッセイは、現在のディープラーニングが主にシステム1の能力で成功するという考えに基づいている。
興味深い数学的ステートメントを構成するものについて質問するために、情報理論的な姿勢を取る。
論文 参考訳(メタデータ) (2024-03-07T15:12:06Z) - Disagreement amongst counterfactual explanations: How transparency can
be deceptive [0.0]
偽物の説明は、説明可能な人工知能技術としてますます使われている。
すべてのアルゴリズムが同じインスタンスに対して一様説明を生成するわけではない。
悪意のあるエージェントがこの多様性を使って不公平な機械学習モデルに見合うと、倫理的な問題が生じる。
論文 参考訳(メタデータ) (2023-04-25T09:15:37Z) - Eliminating The Impossible, Whatever Remains Must Be True [46.39428193548396]
より簡潔な「なぜ」形式的な説明をするために背景知識を適用する方法を示す。
また,既存のルール誘導手法を用いて,データセットから背景情報を効率的に抽出する方法を示す。
論文 参考訳(メタデータ) (2022-06-20T03:18:14Z) - Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles [50.81061839052459]
我々は確率論的問題として、堅牢な対実的説明の生成を定式化する。
アンサンブルモデルのロバスト性とベース学習者のロバスト性との関係を示す。
本手法は, 反実的説明から初期観測までの距離をわずかに増加させるだけで, 高いロバスト性を実現する。
論文 参考訳(メタデータ) (2022-05-27T17:28:54Z) - Visual Abductive Reasoning [85.17040703205608]
帰納的推論は、部分的な観察の可能な限りの可能な説明を求める。
本稿では,日常的な視覚的状況下でのマシンインテリジェンスの帰納的推論能力を調べるために,新たなタスクとデータセットであるVisual Abductive Reasoning(VAR)を提案する。
論文 参考訳(メタデータ) (2022-03-26T10:17:03Z) - Human Interpretation of Saliency-based Explanation Over Text [65.29015910991261]
テキストデータ上でのサリエンシに基づく説明について検討する。
人はしばしば説明を誤って解釈する。
本稿では,過度知覚と過小認識のモデル推定に基づいて,サリエンシを調整する手法を提案する。
論文 参考訳(メタデータ) (2022-01-27T15:20:32Z) - Why Machine Learning Cannot Ignore Maximum Likelihood Estimation [1.7056768055368383]
分野としての機械学習の成長は、分野全体の関心や出版物の増加とともに加速している。
ここでは、機械学習が機能的パラメータ推定の最大可能性を統合することが重要なアイデアである、と断言する。
論文 参考訳(メタデータ) (2021-10-23T01:57:40Z) - Counterfactual Instances Explain Little [7.655239948659383]
機械学習システムの意思決定を説明することは重要である。
益々人気が高まっているアプローチは、実例の説明を提供することである。
本論では, 十分な説明は, 因果方程式と反実例の両方から成り立たなければならないと論じる。
論文 参考訳(メタデータ) (2021-09-20T19:40:25Z) - Individual Explanations in Machine Learning Models: A Case Study on
Poverty Estimation [63.18666008322476]
機械学習の手法は、敏感な社会的文脈でますます適用されつつある。
本研究の主な目的は2つある。
まず、これらの課題を公開し、関連性のある新しい説明方法の使用にどのように影響するか。
次に、関連するアプリケーションドメインで説明メソッドを実装する際に直面するような課題を軽減する一連の戦略を提示します。
論文 参考訳(メタデータ) (2021-04-09T01:54:58Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Interpretability and Explainability: A Machine Learning Zoo Mini-tour [4.56877715768796]
解釈可能性と説明可能性は、医学、経済学、法学、自然科学における多くの機械学習および統計応用の中核にある。
本稿では,解釈可能性と説明可能性の相違を強調し,これら2つの研究方向について,その具体例を示す。
論文 参考訳(メタデータ) (2020-12-03T10:11:52Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
本稿では,任意の連続ブラックボックス関数の連続的大域的解釈を生成するアルゴリズムを提案する。
我々の解釈は、その芸術の以前の状態から飛躍的な進歩を表している。
論文 参考訳(メタデータ) (2020-11-17T12:39:44Z) - High-dimensional inference: a statistical mechanics perspective [11.532173708183166]
統計的推論は、データから何らかのシステムに関する結論を導き出す科学である。
現在、推論と統計物理学の間には多くの関係があることは明らかである。
この記事は、イタリアの科学雑誌「イタカ」の人工知能に関する号に掲載されている。
論文 参考訳(メタデータ) (2020-10-28T10:17:21Z) - Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for
Post-Hoc Interpretability [54.85658598523915]
我々は,解釈の忠実性を評価する前に,解釈を明確に定義することを提案する。
解釈手法は,ある評価基準の下で異なる性能を示すが,その差は解釈の品質や忠実さから生じるものではない。
論文 参考訳(メタデータ) (2020-09-16T06:38:03Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - SCOUT: Self-aware Discriminant Counterfactual Explanations [78.79534272979305]
対物的視覚的説明の問題点を考察する。
新しい差別的な説明の族が紹介される。
結果として生じる反実的な説明は、最適化が自由で、従って以前の方法よりもはるかに高速である。
論文 参考訳(メタデータ) (2020-04-16T17:05:49Z) - Random thoughts about Complexity, Data and Models [0.0]
データサイエンスと機械学習は、過去10年間強く成長してきた。
我々は「データとモデル」の微妙な関係について検討する。
アルゴリズム複雑性とアルゴリズム学習の関係性を評価する上での鍵となる課題は、圧縮性、決定性、予測可能性の概念である。
論文 参考訳(メタデータ) (2020-04-16T14:27:22Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - Adequate and fair explanations [12.33259114006129]
我々は厳密な論理的基礎を持つ第2の正確な説明に焦点をあてる。
反事実的説明では、完全な説明を提供するために必要な仮定の多くは暗黙的に残されている。
局所的な部分的な説明から完全な局所的な説明へと、そしてグローバルな説明へと移行する方法を探求する。
論文 参考訳(メタデータ) (2020-01-21T14:42:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。