Quantum Mpemba Effect in Random Circuits
- URL: http://arxiv.org/abs/2405.14514v1
- Date: Thu, 23 May 2024 12:51:54 GMT
- Title: Quantum Mpemba Effect in Random Circuits
- Authors: Xhek Turkeshi, Pasquale Calabrese, Andrea De Luca,
- Abstract summary: We study the quantum Mpemba effect in charge-preserving random circuits on qudits via entanglement asymmetry.
We show that the more asymmetric certain classes of initial states are, the faster they restore symmetry and reach the grand-canonical ensemble.
Our results represent a significant advancement in clarifying the emergence of Mpemba physics in generic systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The essence of the Mpemba effect is that non-equilibrium systems may relax faster the further they are from their equilibrium configuration. In the quantum realm, this phenomenon arises in the dynamics of closed systems, where it is witnessed by fundamental features such as symmetry and entanglement. Here, we study the quantum Mpemba effect in charge-preserving random circuits on qudits via entanglement asymmetry, combining extensive numerical simulations and analytical mapping to a classical statistical mechanics problem. We show that the more asymmetric certain classes of initial states (tilted ferromagnets) are, the faster they restore symmetry and reach the grand-canonical ensemble. Conversely, other classes of states (tilted antiferromagnets) do not show the Mpemba effect. Our analysis is based on minimal principles -- locality, unitarity, and symmetry. Consequently, our results represent a significant advancement in clarifying the emergence of Mpemba physics in generic systems, including Hamiltonian and Floquet quantum circuits.
Related papers
- Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Quantum Mpemba effects in many-body localization systems [3.625262223613696]
We show that the symmetry can still be fully restored in many-body localization phases without approaching thermal equilibrium.
We also provide a theoretical analysis of symmetry restoration and quantum Mpemba effects with the help of the effective model for many-body localization.
arXiv Detail & Related papers (2024-08-14T18:00:47Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - The quantum Mpemba effect in free-fermionic mixed states [0.0]
In certain scenarios, greater initial symmetry breaking leads to faster restoration, akin to a quantum Mpemba effect.
This study focuses on investigating the effect of mixed initial states and non-unitary dynamics on symmetry restoration.
arXiv Detail & Related papers (2024-05-14T19:07:25Z) - Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems [0.0]
We conjecture a quasiparticle picture for the charged moments of the reduced density matrix, which are the main ingredients to construct the asymmetry.
By using the Lindblad master equation, we study the effect of gain and loss dissipation on the entanglement asymmetry.
arXiv Detail & Related papers (2024-02-05T11:37:47Z) - Entanglement asymmetry and quantum Mpemba effect in the XY spin chain [0.0]
Entanglement asymmetry is a quantity introduced to measure how much a symmetry is broken in a part of an extended quantum system.
We study the entanglement asymmetry at equilibrium taking the ground state of the XY spin chain.
We find that the power law governing symmetry restoration depends discontinuously on whether the initial state is critical or not.
arXiv Detail & Related papers (2023-10-11T14:10:53Z) - Microscopic origin of the quantum Mpemba effect in integrable systems [0.0]
Mpemba effect states that non-equilibrium states may relax faster when they are further from equilibrium.
We study a quantum version of the Mpemba effect that takes place in closed body systems with a U(1) conserved charge.
arXiv Detail & Related papers (2023-10-06T17:59:17Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - Floquet Prethermal Phase Protected by U(1) Symmetry on a Superconducting
Quantum Processor [15.190898646336613]
Floquet systems exhibit many novel dynamics and interesting out-of-equilibrium phases of matter.
Our work reveals a promising prospect in discovering emergent quantum dynamical phases with digital-analog quantum simulators.
arXiv Detail & Related papers (2021-07-15T13:30:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.