論文の概要: Domain Adaptation of Multilingual Semantic Search -- Literature Review
- arxiv url: http://arxiv.org/abs/2402.02932v1
- Date: Mon, 5 Feb 2024 11:55:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 16:50:02.375340
- Title: Domain Adaptation of Multilingual Semantic Search -- Literature Review
- Title(参考訳): 多言語セマンティック検索のドメイン適応-文献レビュー
- Authors: Anna Bringmann, Anastasia Zhukova
- Abstract要約: 本稿では、低リソース環境でドメイン適応を行うための現在のアプローチの概要と、低リソース環境で多言語セマンティックサーチを行うためのアプローチについて述べる。
我々は,高密度テキスト情報検索システムの一部に基づいて,ドメイン適応手法をクラスタ化するための新しいタイプ法を開発し,それらを効率的に組み合わせる方法について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This literature review gives an overview of current approaches to perform
domain adaptation in a low-resource and approaches to perform multilingual
semantic search in a low-resource setting. We developed a new typology to
cluster domain adaptation approaches based on the part of dense textual
information retrieval systems, which they adapt, focusing on how to combine
them efficiently. We also explore the possibilities of combining multilingual
semantic search with domain adaptation approaches for dense retrievers in a
low-resource setting.
- Abstract(参考訳): 本稿では、低リソース環境でドメイン適応を行うための現在のアプローチの概要と、低リソース環境で多言語セマンティック検索を行うためのアプローチについて述べる。
我々は,高密度テキスト情報検索システムの一部に基づいて,ドメイン適応手法をクラスタ化するための新しいタイプ法を開発し,それらを効率的に組み合わせる方法について検討した。
また,低リソース環境における多言語意味検索とドメイン適応手法を組み合わせる可能性についても検討する。
関連論文リスト
- Scholar Name Disambiguation with Search-enhanced LLM Across Language [0.2302001830524133]
本稿では,複数の言語にまたがる検索強化言語モデルを用いて,名前の曖昧さを改善する手法を提案する。
検索エンジンの強力なクエリ書き換え、意図認識、およびデータインデックス機能を利用することで、エンティティの識別やプロファイルの抽出を行うため、よりリッチな情報を集めることができる。
論文 参考訳(メタデータ) (2024-11-26T04:39:46Z) - Learning to Generalize Unseen Domains via Multi-Source Meta Learning for Text Classification [71.08024880298613]
テキスト分類の多元的領域一般化について検討する。
本稿では、複数の参照ドメインを使用して、未知のドメインで高い精度を達成可能なモデルをトレーニングするフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T07:46:21Z) - MINERS: Multilingual Language Models as Semantic Retrievers [23.686762008696547]
本稿では,意味検索タスクにおける多言語言語モデルの有効性を評価するためのベンチマークであるMINERSを紹介する。
我々は,200以上の多言語にわたるサンプルの検索において,LMの堅牢性を評価する包括的なフレームワークを構築した。
以上の結果から,意味論的に類似した埋め込みを検索することで,最先端のアプローチと競合する性能が得られることが示された。
論文 参考訳(メタデータ) (2024-06-11T16:26:18Z) - DynRefer: Delving into Region-level Multi-modality Tasks via Dynamic Resolution [54.05367433562495]
領域レベルのマルチモーダリティ手法は、参照画像領域を人間の好む言語記述に変換することができる。
残念ながら、固定的な視覚入力を用いた既存の手法の多くは、正確な言語記述を見つけるための解像度適応性に欠けていたままである。
そこで我々はDynReferと呼ばれるダイナミック・レゾリューション・アプローチを提案し、高精度な領域レベルの参照を追求する。
論文 参考訳(メタデータ) (2024-05-25T05:44:55Z) - Multilingual and cross-lingual document classification: A meta-learning
approach [24.66829920826166]
本稿では,文書分類におけるメタラーニング手法を提案する。
提案手法の有効性は2つの設定で示される:少数ショット,未確認言語への言語間適応,多言語共同訓練である。
論文 参考訳(メタデータ) (2021-01-27T10:22:56Z) - FDMT: A Benchmark Dataset for Fine-grained Domain Adaptation in Machine
Translation [53.87731008029645]
機械翻訳(FDMT)における実世界のきめ細かいドメイン適応タスクを提案する。
FDMTデータセットは、自動運転車、AI教育、リアルタイムネットワーク、スマートフォンの4つのサブドメインで構成されている。
この新しい設定で定量的な実験と深い分析を行い、きめ細かいドメイン適応タスクをベンチマークします。
論文 参考訳(メタデータ) (2020-12-31T17:15:09Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
我々は,C-CycleGAN(C-CycleGAN)という,新しいインスタンスレベルのMDAフレームワークを提案する。
C-CycleGANは、(1)異なるドメインからのテキスト入力を連続的な表現空間にエンコードする事前訓練されたテキストエンコーダ、(2)ソースとターゲットドメイン間のギャップを埋めるカリキュラムインスタンスレベルの適応を伴う中間ドメインジェネレータ、(3)中間ドメインで最終感情分類のために訓練されたタスク分類器の3つのコンポーネントから構成される。
3つのベンチマークデータセットに対して広範な実験を行い、最先端のDAアプローチよりも大幅に向上した。
論文 参考訳(メタデータ) (2020-11-17T14:50:55Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Zero-Shot Compositional Policy Learning via Language Grounding [13.45138913186308]
人間は、言語記述のような世界に関する事前の知識を活用することで、新しいタスクに迅速に適応することができる。
本研究では,環境のダイナミクスを視覚的外観から切り離す新たな研究プラットフォームであるBabyAI++を紹介する。
現在の言語誘導型RL/IL技術は、トレーニング環境に過度に適合し、目に見えない組み合わせに直面すると大きなパフォーマンス低下に悩まされる。
論文 参考訳(メタデータ) (2020-04-15T16:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。