論文の概要: Semantic Entropy Can Simultaneously Benefit Transmission Efficiency and Channel Security of Wireless Semantic Communications
- arxiv url: http://arxiv.org/abs/2402.02950v2
- Date: Wed, 7 Feb 2024 03:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 07:48:02.440810
- Title: Semantic Entropy Can Simultaneously Benefit Transmission Efficiency and Channel Security of Wireless Semantic Communications
- Title(参考訳): セマンティックエントロピーは無線セマンティック通信の伝送効率とチャネルセキュリティを同時に改善できる
- Authors: Yankai Rong, Guoshun Nan, Minwei Zhang, Sihan Chen, Songtao Wang, Xuefei Zhang, Nan Ma, Shixun Gong, Zhaohui Yang, Qimei Cui, Xiaofeng Tao, Tony Q. S. Quek,
- Abstract要約: 本稿では,適応トランスミッションと物理層暗号化の両方のためのセマンティクスを探索するためにSemEntropyを提案する。
セムエントロピーは意味論的精度を95%保ち、透過率を60%低減できることを示す。
- 参考スコア(独自算出の注目度): 55.54210451136529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently proliferated deep learning-based semantic communications (DLSC) focus on how transmitted symbols efficiently convey a desired meaning to the destination. However, the sensitivity of neural models and the openness of wireless channels cause the DLSC system to be extremely fragile to various malicious attacks. This inspires us to ask a question: "Can we further exploit the advantages of transmission efficiency in wireless semantic communications while also alleviating its security disadvantages?". Keeping this in mind, we propose SemEntropy, a novel method that answers the above question by exploring the semantics of data for both adaptive transmission and physical layer encryption. Specifically, we first introduce semantic entropy, which indicates the expectation of various semantic scores regarding the transmission goal of the DLSC. Equipped with such semantic entropy, we can dynamically assign informative semantics to Orthogonal Frequency Division Multiplexing (OFDM) subcarriers with better channel conditions in a fine-grained manner. We also use the entropy to guide semantic key generation to safeguard communications over open wireless channels. By doing so, both transmission efficiency and channel security can be simultaneously improved. Extensive experiments over various benchmarks show the effectiveness of the proposed SemEntropy. We discuss the reason why our proposed method benefits secure transmission of DLSC, and also give some interesting findings, e.g., SemEntropy can keep the semantic accuracy remain 95% with 60% less transmission.
- Abstract(参考訳): 最近普及した深層学習に基づく意味コミュニケーション(DLSC)は、送信されたシンボルが目的地に望ましい意味を効率的に伝達する方法に焦点を当てている。
しかし、ニューラルネットワークの感度と無線チャネルの開放性により、DLSCシステムは様々な悪意のある攻撃に対して極めて脆弱である。
これは「無線セマンティック通信における送信効率の利点をさらに活用し、セキュリティ上の欠点を軽減するか?
このことを念頭に置いて,適応トランスミッションと物理層暗号化の両方のためのデータのセマンティクスを探索することにより,上記の疑問に答える新しい手法であるSemEntropyを提案する。
具体的には,まずセマンティックエントロピーを導入し,DLSCの送信目標に関する様々なセマンティックスコアの期待を示す。
このようなセマンティックエントロピーを具備し,より細かなチャネル条件で直交周波数分割多重化(OFDM)サブキャリアに情報的セマンティクスを動的に割り当てる。
また、エントロピーを用いてセマンティックキー生成を誘導し、オープン無線チャネル上の通信を保護します。
これにより、伝送効率とチャネルセキュリティの両方を同時に改善することができる。
様々なベンチマークに対する大規模な実験は、提案されたセムエントロピーの有効性を示している。
提案手法がDLSCのセキュアな伝送に有効である理由を論じるとともに,セムエントロピー(SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntropy, SemEntrop
関連論文リスト
- IRS-Enhanced Secure Semantic Communication Networks: Cross-Layer and Context-Awared Resource Allocation [30.000606717755833]
eavesdroppingの課題は、無線通信のオープンな性質のため、セマンティックプライバシに深刻な脅威をもたらす。
本稿では,タスク指向のセマンティック視点から物理層セキュリティを保証するために,インテリジェント反射面(IRS)強化セキュアセマンティック通信(IRS-SSC)を提案する。
本研究では,高次元意味空間と可観測系状態空間を融合させる新しい意味認識状態空間(SCA-SS)を提案する。
論文 参考訳(メタデータ) (2024-11-04T05:40:30Z) - Latency-Aware Generative Semantic Communications with Pre-Trained Diffusion Models [43.27015039765803]
我々は,事前学習した生成モデルを用いた遅延認識型セマンティックコミュニケーションフレームワークを開発した。
我々は,超低レート,低レイテンシ,チャネル適応型セマンティック通信を実証する。
論文 参考訳(メタデータ) (2024-03-25T23:04:09Z) - SemProtector: A Unified Framework for Semantic Protection in Deep Learning-based Semantic Communication Systems [51.97204522852634]
3つのセマンティック・プロテクション・モジュールを用いたオンラインセマンティック・コミュニケーション・システムの実現を目的とした統合されたフレームワークを提案する。
具体的には、これらの保護モジュールは、暗号化方法によって送信されるセマンティクスを暗号化し、摂動機構によって無線チャネルからのプライバシーリスクを軽減し、目的地で歪んだセマンティクスを校正することができる。
我々のフレームワークは、既存のオンラインSCシステムにおいて、上記3つのプラグイン可能なモジュールを動的に組み立てて、カスタマイズされたセマンティックプロテクション要件を満たすことを可能にする。
論文 参考訳(メタデータ) (2023-09-04T06:34:43Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Generative Semantic Communication: Diffusion Models Beyond Bit Recovery [19.088596386865106]
セマンティックコミュニケーションのための新しい生成拡散誘導フレームワークを提案する。
我々は,高度に圧縮された意味情報のみを送信することで帯域幅を削減した。
以上の結果から,非常にノイズの多い条件下でも,物体,位置,深さが認識可能であることが明らかとなった。
論文 参考訳(メタデータ) (2023-06-07T10:36:36Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Is Semantic Communications Secure? A Tale of Multi-Domain Adversarial
Attacks [70.51799606279883]
セマンティック・コミュニケーションのためのディープ・ニューラル・ネットワーク(DNN)に対するテスト・タイム・アタックを導入する。
再建損失が低い場合でも,伝達情報のセマンティクスを変更可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T17:13:22Z) - Communication Beyond Transmitting Bits: Semantics-Guided Source and
Channel Coding [7.080957878208516]
セマンティックコミュニケーションは有望な研究方向を提供する。
セマンティック・アウェア・コミュニケーションを実現するために、コード化された伝達設計にセマンティックガイダンスを注入することは、有効性と信頼性の大きなブレークスルーの可能性を秘めている。
本稿では,セマンティックコミュニケーションの伝達パラダイムとして,セマンティックス誘導ソースとチャネルコーディングに光を当てる。
論文 参考訳(メタデータ) (2022-08-04T06:12:55Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6Gネットワークはデータ転送のセマンティクスと有効性(エンドユーザ)を考慮する必要がある。
観測データの背後にある因果構造を学習するための柱としてNeSy AIが提案されている。
GFlowNetは、無線システムにおいて初めて活用され、データを生成する確率構造を学ぶ。
論文 参考訳(メタデータ) (2022-05-22T07:11:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。