AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image
- URL: http://arxiv.org/abs/2402.02956v4
- Date: Sun, 30 Jun 2024 09:08:55 GMT
- Title: AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image
- Authors: Hamed Amini Amirkolaee, Miaojing Shi, Lianghua He, Mark Mulligan,
- Abstract summary: This paper proposes a framework that is learnt from the source domain with sufficient labeled trees.
It is adapted to the target domain with only a limited number of labeled trees.
Experimental results show that AdaTreeFormer significantly surpasses the state of the art.
- Score: 11.649568595318307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at https://github.com/HAAClassic/AdaTreeFormer.
Related papers
- PureForest: A Large-Scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests [0.0]
We present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification.
Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most.
In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km$2$ across 449 distinct monospecific forests.
arXiv Detail & Related papers (2024-04-18T10:23:10Z) - Tree Counting by Bridging 3D Point Clouds with Imagery [31.02816235514385]
Two-dimensional remote sensing imagery primarily shows overstory canopy, and it does not facilitate easy differentiation of individual trees in areas with a dense canopy.
We leverage the fusion of three-dimensional LiDAR measurements and 2D imagery to facilitate the accurate counting of trees.
We compare a deep learning approach to counting trees in forests using 3D airborne LiDAR data and 2D imagery.
arXiv Detail & Related papers (2024-03-04T11:02:17Z) - ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained
Visual Categorization [56.37520969273242]
We introduce ViTree, a novel approach for fine-grained visual categorization.
By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions.
This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model's inner workings.
arXiv Detail & Related papers (2024-01-30T14:32:25Z) - Benchmarking Individual Tree Mapping with Sub-meter Imagery [6.907098367807166]
We introduce an evaluation framework suited for individual tree mapping in any physical environment.
We review and compare different approaches and deep architectures, and introduce a new method that we experimentally prove to be a good compromise between segmentation and detection.
arXiv Detail & Related papers (2023-11-14T08:21:36Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
We propose TreeLearn, a deep learning-based approach for tree instance segmentation of forest point clouds.
TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms.
We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software.
arXiv Detail & Related papers (2023-09-15T15:20:16Z) - Trust your Good Friends: Source-free Domain Adaptation by Reciprocal
Neighborhood Clustering [50.46892302138662]
We address the source-free domain adaptation problem, where the source pretrained model is adapted to the target domain in the absence of source data.
Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters.
We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood.
arXiv Detail & Related papers (2023-09-01T15:31:18Z) - TreeFormer: a Semi-Supervised Transformer-based Framework for Tree
Counting from a Single High Resolution Image [6.789370732159176]
Tree density estimation and counting using single aerial and satellite images is a challenging task in photogrammetry and remote sensing.
We propose the first semisupervised transformer-based framework for tree counting which reduces the expensive tree annotations for remote sensing images.
Our model was evaluated on two benchmark tree counting datasets, Jiangsu, and Yosemite, as well as a new dataset, KCL-London, created by ourselves.
arXiv Detail & Related papers (2023-07-12T12:19:36Z) - Efficient Hierarchical Domain Adaptation for Pretrained Language Models [77.02962815423658]
Generative language models are trained on diverse, general domain corpora.
We introduce a method to scale domain adaptation to many diverse domains using a computationally efficient adapter approach.
arXiv Detail & Related papers (2021-12-16T11:09:29Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance
Segmentation [75.93960390191262]
We exploit prior knowledge of the relations among object categories to cluster fine-grained classes into coarser parent classes.
We propose a simple yet effective resampling method, NMS Resampling, to re-balance the data distribution.
Our method, termed as Forest R-CNN, can serve as a plug-and-play module being applied to most object recognition models.
arXiv Detail & Related papers (2020-08-13T03:52:37Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.