TreeFormer: a Semi-Supervised Transformer-based Framework for Tree
Counting from a Single High Resolution Image
- URL: http://arxiv.org/abs/2307.06118v1
- Date: Wed, 12 Jul 2023 12:19:36 GMT
- Title: TreeFormer: a Semi-Supervised Transformer-based Framework for Tree
Counting from a Single High Resolution Image
- Authors: Hamed Amini Amirkolaee, Miaojing Shi, Mark Mulligan
- Abstract summary: Tree density estimation and counting using single aerial and satellite images is a challenging task in photogrammetry and remote sensing.
We propose the first semisupervised transformer-based framework for tree counting which reduces the expensive tree annotations for remote sensing images.
Our model was evaluated on two benchmark tree counting datasets, Jiangsu, and Yosemite, as well as a new dataset, KCL-London, created by ourselves.
- Score: 6.789370732159176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic tree density estimation and counting using single aerial and
satellite images is a challenging task in photogrammetry and remote sensing,
yet has an important role in forest management. In this paper, we propose the
first semisupervised transformer-based framework for tree counting which
reduces the expensive tree annotations for remote sensing images. Our method,
termed as TreeFormer, first develops a pyramid tree representation module based
on transformer blocks to extract multi-scale features during the encoding
stage. Contextual attention-based feature fusion and tree density regressor
modules are further designed to utilize the robust features from the encoder to
estimate tree density maps in the decoder. Moreover, we propose a pyramid
learning strategy that includes local tree density consistency and local tree
count ranking losses to utilize unlabeled images into the training process.
Finally, the tree counter token is introduced to regulate the network by
computing the global tree counts for both labeled and unlabeled images. Our
model was evaluated on two benchmark tree counting datasets, Jiangsu, and
Yosemite, as well as a new dataset, KCL-London, created by ourselves. Our
TreeFormer outperforms the state of the art semi-supervised methods under the
same setting and exceeds the fully-supervised methods using the same number of
labeled images. The codes and datasets are available at
https://github.com/HAAClassic/TreeFormer.
Related papers
- BranchPoseNet: Characterizing tree branching with a deep learning-based pose estimation approach [0.0]
This paper presents an automated pipeline for detecting tree whorls in proximally laser scanning data using a pose-estimation deep learning model.
Accurate whorl detection provides valuable insights into tree growth patterns, wood quality, and offers potential for use as a biometric marker to track trees throughout the forestry value chain.
arXiv Detail & Related papers (2024-09-23T07:10:11Z) - Tree Counting by Bridging 3D Point Clouds with Imagery [31.02816235514385]
Two-dimensional remote sensing imagery primarily shows overstory canopy, and it does not facilitate easy differentiation of individual trees in areas with a dense canopy.
We leverage the fusion of three-dimensional LiDAR measurements and 2D imagery to facilitate the accurate counting of trees.
We compare a deep learning approach to counting trees in forests using 3D airborne LiDAR data and 2D imagery.
arXiv Detail & Related papers (2024-03-04T11:02:17Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
We introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees.
We fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance.
arXiv Detail & Related papers (2024-02-06T07:40:53Z) - AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image [11.649568595318307]
This paper proposes a framework that is learnt from the source domain with sufficient labeled trees.
It is adapted to the target domain with only a limited number of labeled trees.
Experimental results show that AdaTreeFormer significantly surpasses the state of the art.
arXiv Detail & Related papers (2024-02-05T12:34:03Z) - ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained
Visual Categorization [56.37520969273242]
We introduce ViTree, a novel approach for fine-grained visual categorization.
By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions.
This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model's inner workings.
arXiv Detail & Related papers (2024-01-30T14:32:25Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
We propose TreeLearn, a deep learning-based approach for tree instance segmentation of forest point clouds.
TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms.
We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software.
arXiv Detail & Related papers (2023-09-15T15:20:16Z) - Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams) [5.384630221560809]
This paper presents a computational framework for the Wasserstein auto-encoding of merge trees (MT-WAE)
In contrast to traditional auto-encoders which operate on vectorized data, our formulation explicitly manipulates merge trees on their associated metric space at each layer of the network.
Experiments on public ensembles demonstrate the efficiency of our algorithms, with MT-WAE computations in the orders of minutes on average.
arXiv Detail & Related papers (2023-07-05T09:46:52Z) - RLET: A Reinforcement Learning Based Approach for Explainable QA with
Entailment Trees [47.745218107037786]
We propose RLET, a Reinforcement Learning based Entailment Tree generation framework.
RLET iteratively performs single step reasoning with sentence selection and deduction generation modules.
Experiments on three settings of the EntailmentBank dataset demonstrate the strength of using RL framework.
arXiv Detail & Related papers (2022-10-31T06:45:05Z) - Structure-Unified M-Tree Coding Solver for MathWord Problem [57.825176412485504]
In previous work, models designed by taking into account the properties of the binary tree structure of mathematical expressions at the output side have achieved better performance.
In this paper, we propose the Structure-Unified M-Tree Coding Coding (S-UMCr), which applies a tree with any M branches (M-tree) to unify the output structures.
Experimental results on the widely used MAWPS and Math23K datasets have demonstrated that SUMC-r not only outperforms several state-of-the-art models but also performs much better under low-resource conditions.
arXiv Detail & Related papers (2022-10-22T12:20:36Z) - Tree Energy Loss: Towards Sparsely Annotated Semantic Segmentation [141.16965264264195]
Sparsely annotated semantic segmentation (SASS) aims to train a segmentation network with coarse-grained supervisions.
We propose a novel tree energy loss for SASS by providing semantic guidance for unlabeled pixels.
arXiv Detail & Related papers (2022-03-21T05:16:23Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
We propose an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data.
We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space.
arXiv Detail & Related papers (2021-02-11T08:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.