Cooperative Learning with Gaussian Processes for Euler-Lagrange Systems
Tracking Control under Switching Topologies
- URL: http://arxiv.org/abs/2402.03048v1
- Date: Mon, 5 Feb 2024 14:33:52 GMT
- Title: Cooperative Learning with Gaussian Processes for Euler-Lagrange Systems
Tracking Control under Switching Topologies
- Authors: Zewen Yang, Songbo Dong, Armin Lederer, Xiaobing Dai, Siyu Chen,
Stefan Sosnowski, Georges Hattab, Sandra Hirche
- Abstract summary: This work presents an innovative learning-based approach to tackle the tracking control problem of Euler-Lagrange multi-agent systems.
A standout feature is its exceptional efficiency in deriving the aggregation weights achieved.
Simulation experiments validate the protocol's efficacy in effectively managing complex scenarios.
- Score: 9.838373797093245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents an innovative learning-based approach to tackle the
tracking control problem of Euler-Lagrange multi-agent systems with partially
unknown dynamics operating under switching communication topologies. The
approach leverages a correlation-aware cooperative algorithm framework built
upon Gaussian process regression, which adeptly captures inter-agent
correlations for uncertainty predictions. A standout feature is its exceptional
efficiency in deriving the aggregation weights achieved by circumventing the
computationally intensive posterior variance calculations. Through Lyapunov
stability analysis, the distributed control law ensures bounded tracking errors
with high probability. Simulation experiments validate the protocol's efficacy
in effectively managing complex scenarios, establishing it as a promising
solution for robust tracking control in multi-agent systems characterized by
uncertain dynamics and dynamic communication structures.
Related papers
- Decentralized Event-Triggered Online Learning for Safe Consensus of
Multi-Agent Systems with Gaussian Process Regression [3.405252606286664]
This paper presents a novel learning-based distributed control law, augmented by an auxiliary dynamics.
For continuous enhancement in predictive performance, a data-efficient online learning strategy with a decentralized event-triggered mechanism is proposed.
To demonstrate the efficacy of the proposed learning-based controller, a comparative analysis is conducted, contrasting it with both conventional distributed control laws and offline learning methodologies.
arXiv Detail & Related papers (2024-02-05T16:41:17Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - Guaranteed Trajectory Tracking under Learned Dynamics with Contraction Metrics and Disturbance Estimation [5.147919654191323]
This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation.
The proposed framework is validated on a planar quadrotor example.
arXiv Detail & Related papers (2021-12-15T15:57:33Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Trajectory Tracking of Underactuated Sea Vessels With Uncertain
Dynamics: An Integral Reinforcement Learning Approach [2.064612766965483]
An online machine learning mechanism based on integral reinforcement learning is proposed to find a solution for a class of nonlinear tracking problems.
The solution is implemented using an online value iteration process which is realized by employing means of the adaptive critics and gradient descent approaches.
arXiv Detail & Related papers (2021-04-01T01:41:49Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.