論文の概要: Realizing Video Summarization from the Path of Language-based Semantic Understanding
- arxiv url: http://arxiv.org/abs/2410.04511v1
- Date: Sun, 6 Oct 2024 15:03:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 06:56:10.213711
- Title: Realizing Video Summarization from the Path of Language-based Semantic Understanding
- Title(参考訳): 言語に基づく意味理解の経路からの映像要約の実現
- Authors: Kuan-Chen Mu, Zhi-Yi Chin, Wei-Chen Chiu,
- Abstract要約: 本稿では,Mixture of Experts(MoE)パラダイムに触発された新しいビデオ要約フレームワークを提案する。
提案手法は,複数のビデオLLMを統合し,包括的で一貫性のあるテキスト要約を生成する。
- 参考スコア(独自算出の注目度): 19.825666473712197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent development of Video-based Large Language Models (VideoLLMs), has significantly advanced video summarization by aligning video features and, in some cases, audio features with Large Language Models (LLMs). Each of these VideoLLMs possesses unique strengths and weaknesses. Many recent methods have required extensive fine-tuning to overcome the limitations of these models, which can be resource-intensive. In this work, we observe that the strengths of one VideoLLM can complement the weaknesses of another. Leveraging this insight, we propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm, which operates as an inference-time algorithm without requiring any form of fine-tuning. Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries. It effectively combines visual and audio content, provides detailed background descriptions, and excels at identifying keyframes, which enables more semantically meaningful retrieval compared to traditional computer vision approaches that rely solely on visual information, all without the need for additional fine-tuning. Moreover, the resulting summaries enhance performance in downstream tasks such as summary video generation, either through keyframe selection or in combination with text-to-image models. Our language-driven approach offers a semantically rich alternative to conventional methods and provides flexibility to incorporate newer VideoLLMs, enhancing adaptability and performance in video summarization tasks.
- Abstract(参考訳): 近年のビデオベースLarge Language Models (ビデオLLMs) の開発は,映像特徴と音声特徴をLarge Language Models (LLMs) と整合させることにより,映像要約の大幅な進歩を遂げている。
これらのビデオLLMはそれぞれ独自の長所と短所を持っている。
最近の多くの手法は、資源集約的なこれらのモデルの限界を克服するために、広範囲な微調整を必要としている。
本研究では,あるビデオLLMの強みが他のビデオLLMの弱みを補うことを観察する。
この知見を生かして、我々はMixture of Experts(MoE)パラダイムにインスパイアされた新しいビデオ要約フレームワークを提案する。
提案手法は,複数のビデオLLMを統合し,包括的で一貫性のあるテキスト要約を生成する。
視覚的およびオーディオ的コンテンツを効果的に組み合わせ、詳細な背景記述を提供し、キーフレームの識別に長けており、視覚情報にのみ依存する従来のコンピュータビジョンのアプローチよりも意味論的に意味のある検索を可能にする。
さらに、結果の要約は、キーフレームの選択またはテキスト・ツー・イメージモデルの組み合わせによって、要約ビデオ生成のような下流タスクのパフォーマンスを向上させる。
我々の言語駆動型アプローチは、従来の手法に代えて意味的に豊かな代替手段を提供し、より新しいビデオLLMを組み込む柔軟性を提供し、ビデオ要約タスクにおける適応性と性能を向上させる。
関連論文リスト
- Everything is a Video: Unifying Modalities through Next-Frame Prediction [5.720266474212221]
自然言語処理(NLP)を超えて,タスク再構成の概念を多モーダル学習に拡張する新しいフレームワークを提案する。
本稿では,多様なマルチモーダルタスクを統一した次フレーム予測問題に再構成することを提案する。
提案手法は,テキスト・トゥ・テキスト,画像・トゥ・テキスト,ビデオ・トゥ・ビデオ,ビデオ・トゥ・テキスト,音声・トゥ・テキストなど,様々なタスクで評価される。
論文 参考訳(メタデータ) (2024-11-15T12:59:37Z) - Towards Holistic Language-video Representation: the language model-enhanced MSR-Video to Text Dataset [4.452729255042396]
より堅牢で総合的な言語とビデオの表現が、ビデオの理解を前進させる鍵だ。
現在の平易で単純なテキスト記述と、言語ビデオタスクに対する視覚のみの焦点は、現実世界の自然言語ビデオ検索タスクにおいて限られた能力をもたらす。
本稿では,ビデオ言語データセットを自動的に拡張し,モダリティと文脈認識を向上する手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T20:16:17Z) - Language-Guided Self-Supervised Video Summarization Using Text Semantic Matching Considering the Diversity of the Video [22.60291297308379]
本研究では,映像要約タスクを自然言語処理(NLP)タスクに変換する可能性について検討する。
本手法は,ランク相関係数のSumMeデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-14T18:07:04Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
ビデオとテキストのマルチモーダルアライメントは、主にマルチモーダル命令・チューンデータのボリュームと品質が不足しているため、依然として困難である。
本稿では,AIフィードバックからの強化学習(Reinforcement Learning from AI Feedback, RLAIF)と呼ばれる,マルチモーダルAIシステムを用いた新たなアライメント戦略を提案する。
具体的には、嗜好フィードバックの生成中に、詳細な映像記述を文脈として提供することによって、文脈対応報酬モデルを提案する。
論文 参考訳(メタデータ) (2024-02-06T06:27:40Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - Conditional Modeling Based Automatic Video Summarization [70.96973928590958]
ビデオ要約の目的は、全体を伝えるのに必要な重要な情報を保持しながら、自動的にビデオを短縮することである。
映像要約法は視覚的連続性や多様性などの視覚的要因に依存しており、ビデオの内容を完全に理解するには不十分である。
映像要約への新たなアプローチは、人間が地上の真実のビデオ要約を作成する方法から得られる知見に基づいて提案されている。
論文 参考訳(メタデータ) (2023-11-20T20:24:45Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Tellerは、マルチモーダル融合と微粒なモーダルアライメントを利用するビデオ言語基盤モデルである。
Video-Tellerは、凍結した事前訓練されたビジョンと言語モジュールを利用することで、トレーニング効率を高める。
大規模言語モデルの堅牢な言語機能を活用し、簡潔かつ精巧なビデオ記述の生成を可能にする。
論文 参考訳(メタデータ) (2023-10-08T03:35:27Z) - Revisiting the "Video" in Video-Language Understanding [56.15777956496518]
本稿では,ビデオ言語解析の新しいモデルであるアテンポラルプローブ(ATP)を提案する。
現在のビデオ言語ベンチマークの限界とポテンシャルを特徴付ける。
ATPをフルビデオレベル時間モデルに効果的に統合することで、効率と最先端の精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-03T17:57:33Z) - CLIP-It! Language-Guided Video Summarization [96.69415453447166]
この作業では、ジェネリックとクエリにフォーカスしたビデオ要約に対処する単一のフレームワークであるCLIP-Itを導入する。
本稿では,言語誘導型マルチモーダルトランスフォーマーを提案する。
本モデルは, 地道的な監督を伴わずに, 訓練により教師なしの設定に拡張することができる。
論文 参考訳(メタデータ) (2021-07-01T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。