Implantable Adaptive Cells: differentiable architecture search to improve the performance of any trained U-shaped network
- URL: http://arxiv.org/abs/2405.03420v1
- Date: Mon, 6 May 2024 12:40:15 GMT
- Title: Implantable Adaptive Cells: differentiable architecture search to improve the performance of any trained U-shaped network
- Authors: Emil Benedykciuk, Marcin Denkowski, Grzegorz Wójcik,
- Abstract summary: This paper introduces a novel approach to enhance the performance of pre-trained neural networks in medical image segmentation.
We present the concept of Implantable Adaptive Cell (IAC), small but powerful modules identified through Partially-Connected DARTS.
Our strategy allows for the seamless integration of the IAC into the pre-existing architecture, thereby enhancing its performance without necessitating a complete retraining from scratch.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel approach to enhance the performance of pre-trained neural networks in medical image segmentation using Neural Architecture Search (NAS) methods, specifically Differentiable Architecture Search (DARTS). We present the concept of Implantable Adaptive Cell (IAC), small but powerful modules identified through Partially-Connected DARTS, designed to be injected into the skip connections of an existing and already trained U-shaped model. Our strategy allows for the seamless integration of the IAC into the pre-existing architecture, thereby enhancing its performance without necessitating a complete retraining from scratch. The empirical studies, focusing on medical image segmentation tasks, demonstrate the efficacy of this method. The integration of specialized IAC cells into various configurations of the U-Net model increases segmentation accuracy by almost 2\% points on average for the validation dataset and over 3\% points for the training dataset. The findings of this study not only offer a cost-effective alternative to the complete overhaul of complex models for performance upgrades but also indicate the potential applicability of our method to other architectures and problem domains.
Related papers
- Rethinking Model Prototyping through the MedMNIST+ Dataset Collection [0.11999555634662634]
This work presents a benchmark for the MedMNIST+ database to diversify the evaluation landscape.
We conduct a thorough analysis of common convolutional neural networks (CNNs) and Transformer-based architectures, for medical image classification.
Our findings suggest that computationally efficient training schemes and modern foundation models hold promise in bridging the gap between expensive end-to-end training and more resource-refined approaches.
arXiv Detail & Related papers (2024-04-24T10:19:25Z) - Architecture Analysis and Benchmarking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation [0.8897689150430447]
We conduct the first systematic benchmark study for variants of 3D U-shaped models.
Our study examines the impact of different attention mechanisms, the number of resolution stages, and network configurations on segmentation accuracy and computational complexity.
arXiv Detail & Related papers (2024-02-05T17:43:02Z) - DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation [43.842694540544194]
We propose to combine domain generalization and test-time adaptation to create a highly effective approach for reusing pre-trained models in unseen target domains.
We demonstrate that our method, combined with pre-trained whole-body CT models, can effectively segment MR images with high accuracy.
arXiv Detail & Related papers (2023-12-11T10:26:21Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - End-to-end Neuron Instance Segmentation based on Weakly Supervised
Efficient UNet and Morphological Post-processing [0.0]
We present an end-to-end weakly-supervised framework to automatically detect and segment NeuN stained neuronal cells on histological images.
We integrate the state-of-the-art network, EfficientNet, into our U-Net-like architecture.
arXiv Detail & Related papers (2022-02-17T14:35:45Z) - DAFormer: Improving Network Architectures and Training Strategies for
Domain-Adaptive Semantic Segmentation [99.88539409432916]
We study the unsupervised domain adaptation (UDA) process.
We propose a novel UDA method, DAFormer, based on the benchmark results.
DAFormer significantly improves the state-of-the-art performance by 10.8 mIoU for GTA->Cityscapes and 5.4 mIoU for Synthia->Cityscapes.
arXiv Detail & Related papers (2021-11-29T19:00:46Z) - Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural
Architecture Search [15.454709248397208]
This study focuses on how to find feasible deep models under diverse design objectives.
We propose a classification-wise Pareto evolution approach for one-shot NAS, where an online classifier is trained to predict the dominance relationship between the candidate and constructed reference architectures.
We find a number of neural architectures with different model sizes ranging from 2M to 6M under diverse objectives and constraints.
arXiv Detail & Related papers (2021-09-14T13:28:07Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
We propose a method to dynamically grow a GAN during training, optimizing the network architecture and its parameters together with automation.
The method embeds architecture search techniques as an interleaving step with gradient-based training to periodically seek the optimal architecture-growing strategy for the generator and discriminator.
arXiv Detail & Related papers (2021-06-16T01:25:51Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.