論文の概要: RAG-Fusion: a New Take on Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2402.03367v1
- Date: Wed, 31 Jan 2024 22:06:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-11 15:26:52.282954
- Title: RAG-Fusion: a New Take on Retrieval-Augmented Generation
- Title(参考訳): rag-fusion: 検索型生成の新しいアプローチ
- Authors: Zackary Rackauckas
- Abstract要約: Infineonは、エンジニア、アカウントマネージャ、顧客が迅速に製品情報を取得する必要性を特定している。
この研究は人工知能(AI)と自然言語処理(NLP)の応用において大きな進歩をみせている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infineon has identified a need for engineers, account managers, and customers
to rapidly obtain product information. This problem is traditionally addressed
with retrieval-augmented generation (RAG) chatbots, but in this study, I
evaluated the use of the newly popularized RAG-Fusion method. RAG-Fusion
combines RAG and reciprocal rank fusion (RRF) by generating multiple queries,
reranking them with reciprocal scores and fusing the documents and scores.
Through manually evaluating answers on accuracy, relevance, and
comprehensiveness, I found that RAG-Fusion was able to provide accurate and
comprehensive answers due to the generated queries contextualizing the original
query from various perspectives. However, some answers strayed off topic when
the generated queries' relevance to the original query is insufficient. This
research marks significant progress in artificial intelligence (AI) and natural
language processing (NLP) applications and demonstrates transformations in a
global and multi-industry context.
- Abstract(参考訳): Infineonは、エンジニア、アカウントマネージャ、顧客が迅速に製品情報を取得する必要性を特定している。
従来,この問題は検索強化型チャットボット(RAG)で対処されてきたが,本研究では新たに普及したRAG-Fusion法を用いて評価した。
RAG-Fusion は RAG と reciprocal rank fusion (RRF) を組み合わせて複数のクエリを生成し、それらを相互スコアに再分類し、文書とスコアを融合させる。
精度,関連性,包括性に関する回答を手動で評価することで,RAG-Fusionは,生成したクエリをさまざまな視点からコンテキスト化することによって,正確かつ包括的な回答を提供することができた。
しかし、生成したクエリと元のクエリとの関連性が不十分な場合、いくつかの回答はトピックから逸脱した。
この研究は、人工知能(ai)と自然言語処理(nlp)のアプリケーションにおける重要な進歩を示し、グローバルかつ多産業のコンテキストにおけるトランスフォーメーションを実証する。
関連論文リスト
- QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - ScopeQA: A Framework for Generating Out-of-Scope Questions for RAG [52.33835101586687]
会話AIエージェントはRetrieval Augmented Generation(RAG)を使用して、ユーザからの問い合わせに対して検証可能なドキュメント地上応答を提供する。
本稿では,多様な境界線外質問を効率よく生成する,ガイド付き幻覚に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T16:11:29Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Optimizing Query Generation for Enhanced Document Retrieval in RAG [53.10369742545479]
大規模言語モデル(LLM)は様々な言語タスクに優れるが、しばしば誤った情報を生成する。
Retrieval-Augmented Generation (RAG) は、正確な応答に文書検索を使用することによってこれを緩和することを目的としている。
論文 参考訳(メタデータ) (2024-07-17T05:50:32Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - FeB4RAG: Evaluating Federated Search in the Context of Retrieval
Augmented Generation [31.371489527686578]
フェデレートされた検索システムは、複数の検索エンジンの検索結果を集約し、結果の品質を高め、ユーザの意図に合わせた適切なソースを選択する。
FEB4RAGはRAGフレームワーク内でのフェデレーション検索に特化した新しいデータセットである。
論文 参考訳(メタデータ) (2024-02-19T07:06:52Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。