A Framework for Effective Invocation Methods of Various LLM Services
- URL: http://arxiv.org/abs/2402.03408v3
- Date: Mon, 23 Dec 2024 12:55:21 GMT
- Title: A Framework for Effective Invocation Methods of Various LLM Services
- Authors: Can Wang, Dianbo Sui, Bolin Zhang, Xiaoyu Liu, Jiabao Kang, Zhidong Qiao, Zhiying Tu,
- Abstract summary: Large Language Models (LLMs) have shown impressive abilities in solving various natural language processing tasks.
Various providers offer various LLM services with variations in pricing, latency, and performance.
This paper provides a comprehensive overview of methods help LLM services to be invoked efficiently.
- Score: 8.282170544208373
- License:
- Abstract: Large Language Models (LLMs) have shown impressive abilities in solving various natural language processing tasks and are now widely offered as services. LLM services enable users to accomplish tasks without requiring specialized knowledge, simply by paying service providers. However, numerous providers offer various LLM services with variations in pricing, latency, and performance. These factors are also affected by different invocation methods, such as the choice of context and the use of cache, which lead to unpredictable and uncontrollable service cost and quality. Consequently, utilizing various LLM services invocation methods to construct an effective (cost-saving, low-latency and high-performance) invocation strategy that best meets task demands becomes a pressing challenge. This paper provides a comprehensive overview of methods help LLM services to be invoked efficiently. Technically, we define the problem of constructing an effective LLM services invocation strategy, and based on this, propose a unified LLM service invocation framework. The framework classifies existing methods into four categories: input abstraction, semantic cache, solution design, and output enhancement, which can be used separately or jointly during the invocation life cycle. We discuss the methods in each category and compare them to provide valuable guidance for researchers. Finally, we emphasize the open challenges in this domain and shed light on future research.
Related papers
- Plug-and-Play Performance Estimation for LLM Services without Relying on Labeled Data [8.360964737763657]
Large Language Model (LLM) services exhibit impressive capability on unlearned tasks leveraging only a few examples by in-context learning (ICL)
This paper introduces a novel method to estimate the performance of LLM services across different tasks and contexts.
arXiv Detail & Related papers (2024-10-10T09:15:14Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
Multimodal Entities Linking (MEL) is a crucial task that aims at linking ambiguous mentions within multimodal contexts to referent entities in a multimodal knowledge base, such as Wikipedia.
Existing methods overcomplicate the MEL task and overlook the visual semantic information, which makes them costly and hard to scale.
We propose UniMEL, a unified framework which establishes a new paradigm to process multimodal entity linking tasks using Large Language Models.
arXiv Detail & Related papers (2024-07-23T03:58:08Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs.
We provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal.
Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context.
arXiv Detail & Related papers (2023-05-22T16:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.