Early prediction of onset of sepsis in Clinical Setting
- URL: http://arxiv.org/abs/2402.03486v1
- Date: Mon, 5 Feb 2024 19:58:40 GMT
- Title: Early prediction of onset of sepsis in Clinical Setting
- Authors: Fahim Mohammad, Lakshmi Arunachalam, Samanway Sadhu, Boudewijn Aasman,
Shweta Garg, Adil Ahmed, Silvie Colman, Meena Arunachalam, Sudhir Kulkarni,
Parsa Mirhaji
- Abstract summary: A supervised learning approach was adopted, wherein an XGBoost model was trained utilizing 80% of the train dataset.
The model was validated on prospective data that was entirely unseen during the training phase.
The model achieved a normalized utility score of 0.494 on test data and 0.378 on prospective data at threshold 0.3.
- Score: 0.8471078314535754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes the use of Machine Learning models to predict the early
onset of sepsis using deidentified clinical data from Montefiore Medical Center
in Bronx, NY, USA. A supervised learning approach was adopted, wherein an
XGBoost model was trained utilizing 80\% of the train dataset, encompassing 107
features (including the original and derived features). Subsequently, the model
was evaluated on the remaining 20\% of the test data. The model was validated
on prospective data that was entirely unseen during the training phase. To
assess the model's performance at the individual patient level and timeliness
of the prediction, a normalized utility score was employed, a widely recognized
scoring methodology for sepsis detection, as outlined in the PhysioNet Sepsis
Challenge paper. Metrics such as F1 Score, Sensitivity, Specificity, and Flag
Rate were also devised. The model achieved a normalized utility score of 0.494
on test data and 0.378 on prospective data at threshold 0.3. The F1 scores were
80.8\% and 67.1\% respectively for the test data and the prospective data for
the same threshold, highlighting its potential to be integrated into clinical
decision-making processes effectively. These results bear testament to the
model's robust predictive capabilities and its potential to substantially
impact clinical decision-making processes.
Related papers
- Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
Sepsis is a severe condition responsible for many deaths in the United States and worldwide.
Previous studies employing machine learning faced limitations in feature selection and model interpretability.
This research aimed to develop an interpretable and accurate machine learning model to predict in-hospital sepsis mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
This study aims to use heart rate variability (HRV) features to develop an effective predictive model for sepsis detection.
A neural network model is trained on the HRV features, achieving an F1 score of 0.805, a precision of 0.851, and a recall of 0.763.
arXiv Detail & Related papers (2024-08-01T01:47:29Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
This paper examines the limitations of traditional sepsis screening tools like Systemic Inflammatory Response Syndrome, Modified Early Warning Score, and Quick Sequential Organ Failure Assessment.
We propose using machine learning techniques - Random Forest, Extreme Gradient Boosting, and Decision Tree models - to predict sepsis onset.
Our study evaluates these models individually and in a combined meta-ensemble approach using key metrics such as Accuracy, Precision, Recall, F1 score, and Area Under the Receiver Operating Characteristic Curve.
arXiv Detail & Related papers (2024-07-11T00:51:32Z) - Symptom-based Machine Learning Models for the Early Detection of
COVID-19: A Narrative Review [0.0]
Machine learning models can analyze large datasets, incorporating patient-reported symptoms, clinical data, and medical imaging.
In this paper, we provide an overview of the landscape of symptoms-only machine learning models for predicting COVID-19, including their performance and limitations.
The review will also examine the performance of symptom-based models when compared to image-based models.
arXiv Detail & Related papers (2023-12-08T01:41:42Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.