Assessing the Impact of Distribution Shift on Reinforcement Learning
Performance
- URL: http://arxiv.org/abs/2402.03590v1
- Date: Mon, 5 Feb 2024 23:50:55 GMT
- Title: Assessing the Impact of Distribution Shift on Reinforcement Learning
Performance
- Authors: Ted Fujimoto and Joshua Suetterlein and Samrat Chatterjee and Auroop
Ganguly
- Abstract summary: Reinforcement learning (RL) faces its own set of unique challenges.
Comparison of point estimates, and plots that show successful convergence to the optimal policy during training, may obfuscate overfitting or dependence on the experimental setup.
We propose a set of evaluation methods that measure the robustness of RL algorithms under distribution shifts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in machine learning is making progress in fixing its own
reproducibility crisis. Reinforcement learning (RL), in particular, faces its
own set of unique challenges. Comparison of point estimates, and plots that
show successful convergence to the optimal policy during training, may
obfuscate overfitting or dependence on the experimental setup. Although
researchers in RL have proposed reliability metrics that account for
uncertainty to better understand each algorithm's strengths and weaknesses, the
recommendations of past work do not assume the presence of out-of-distribution
observations. We propose a set of evaluation methods that measure the
robustness of RL algorithms under distribution shifts. The tools presented here
argue for the need to account for performance over time while the agent is
acting in its environment. In particular, we recommend time series analysis as
a method of observational RL evaluation. We also show that the unique
properties of RL and simulated dynamic environments allow us to make stronger
assumptions to justify the measurement of causal impact in our evaluations. We
then apply these tools to single-agent and multi-agent environments to show the
impact of introducing distribution shifts during test time. We present this
methodology as a first step toward rigorous RL evaluation in the presence of
distribution shifts.
Related papers
- Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations.
We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
We propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL)
Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function.
We provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
arXiv Detail & Related papers (2024-03-18T14:51:19Z) - Exploiting Estimation Bias in Clipped Double Q-Learning for Continous Control Reinforcement Learning Tasks [5.968716050740402]
This paper focuses on addressing and exploiting estimation biases in Actor-Critic methods for continuous control tasks.
We design a Bias Exploiting (BE) mechanism to dynamically select the most advantageous estimation bias during training of the RL agent.
Most State-of-the-art Deep RL algorithms can be equipped with the BE mechanism, without hindering performance or computational complexity.
arXiv Detail & Related papers (2024-02-14T10:44:03Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
We first identify a fundamental pattern, self-excitation, as the primary cause of Q-value estimation divergence in offline RL.
We then propose a novel Self-Excite Eigenvalue Measure (SEEM) metric to measure the evolving property of Q-network at training.
For the first time, our theory can reliably decide whether the training will diverge at an early stage.
arXiv Detail & Related papers (2023-10-06T17:57:44Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Taming Multi-Agent Reinforcement Learning with Estimator Variance
Reduction [12.94372063457462]
Centralised training with decentralised execution (CT-DE) serves as the foundation of many leading multi-agent reinforcement learning (MARL) algorithms.
It suffers from a critical drawback due to its reliance on learning from a single sample of the joint-action at a given state.
We propose an enhancement tool that accommodates any actor-critic MARL method.
arXiv Detail & Related papers (2022-09-02T13:44:00Z) - Exploring the Training Robustness of Distributional Reinforcement
Learning against Noisy State Observations [7.776010676090131]
State observations that an agent observes may contain measurement errors or adversarial noises, misleading the agent to take suboptimal actions or even collapse while training.
In this paper, we study the training robustness of distributional Reinforcement Learning (RL), a class of state-of-the-art methods that estimate the whole distribution, as opposed to only the expectation, of the total return.
arXiv Detail & Related papers (2021-09-17T22:37:39Z) - Deep Reinforcement Learning at the Edge of the Statistical Precipice [31.178451465925555]
We argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field.
We advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results.
arXiv Detail & Related papers (2021-08-30T14:23:48Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
Offline Reinforcement Learning promises to learn effective policies from previously-collected, static datasets without the need for exploration.
Existing Q-learning and actor-critic based off-policy RL algorithms fail when bootstrapping from out-of-distribution (OOD) actions or states.
We propose Uncertainty Weighted Actor-Critic (UWAC), an algorithm that detects OOD state-action pairs and down-weights their contribution in the training objectives accordingly.
arXiv Detail & Related papers (2021-05-17T20:16:46Z) - Instabilities of Offline RL with Pre-Trained Neural Representation [127.89397629569808]
In offline reinforcement learning (RL), we seek to utilize offline data to evaluate (or learn) policies in scenarios where the data are collected from a distribution that substantially differs from that of the target policy to be evaluated.
Recent theoretical advances have shown that such sample-efficient offline RL is indeed possible provided certain strong representational conditions hold.
This work studies these issues from an empirical perspective to gauge how stable offline RL methods are.
arXiv Detail & Related papers (2021-03-08T18:06:44Z) - Causal Inference Q-Network: Toward Resilient Reinforcement Learning [57.96312207429202]
We consider a resilient DRL framework with observational interferences.
Under this framework, we propose a causal inference based DRL algorithm called causal inference Q-network (CIQ)
Our experimental results show that the proposed CIQ method could achieve higher performance and more resilience against observational interferences.
arXiv Detail & Related papers (2021-02-18T23:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.