論文の概要: AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction
- arxiv url: http://arxiv.org/abs/2402.03784v2
- Date: Wed, 7 Feb 2024 02:10:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 11:47:01.994776
- Title: AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction
- Title(参考訳): AirPhyNet:空気質予測のための物理誘導ニューラルネットワーク
- Authors: Kethmi Hirushini Hettige, Jiahao Ji, Shili Xiang, Cheng Long, Gao
Cong, Jingyuan Wang
- Abstract要約: 本稿では,空気質予測のための物理誘導ニューラルネットワーク(AirPhyNet)という新しいアプローチを提案する。
我々は、空気粒子移動(拡散と対流)の2つの確立された物理原理を微分方程式ネットワークとして表現することで活用する。
2つの実世界のベンチマークデータセットの実験では、AirPhyNetがさまざまなテストシナリオの最先端モデルを上回っていることが示されている。
- 参考スコア(独自算出の注目度): 40.58819011476455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air quality prediction and modelling plays a pivotal role in public health
and environment management, for individuals and authorities to make informed
decisions. Although traditional data-driven models have shown promise in this
domain, their long-term prediction accuracy can be limited, especially in
scenarios with sparse or incomplete data and they often rely on black-box deep
learning structures that lack solid physical foundation leading to reduced
transparency and interpretability in predictions. To address these limitations,
this paper presents a novel approach named Physics guided Neural Network for
Air Quality Prediction (AirPhyNet). Specifically, we leverage two
well-established physics principles of air particle movement (diffusion and
advection) by representing them as differential equation networks. Then, we
utilize a graph structure to integrate physics knowledge into a neural network
architecture and exploit latent representations to capture spatio-temporal
relationships within the air quality data. Experiments on two real-world
benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art
models for different testing scenarios including different lead time (24h, 48h,
72h), sparse data and sudden change prediction, achieving reduction in
prediction errors up to 10%. Moreover, a case study further validates that our
model captures underlying physical processes of particle movement and generates
accurate predictions with real physical meaning.
- Abstract(参考訳): 大気質の予測とモデリングは公衆衛生と環境管理において重要な役割を担い、個人や当局は情報的決定を行う。
従来のデータ駆動モデルはこの領域で有望性を示しているが、その長期的な予測精度は、特にスパースや不完全なデータを持つシナリオでは制限され、それらは多くの場合、確固とした物理的基盤を持たないブラックボックスのディープラーニング構造に依存しているため、予測における透明性と解釈性が低下する。
本稿では,空気質予測のための物理誘導ニューラルネットワーク(AirPhyNet)という新しい手法を提案する。
具体的には、空気粒子移動(拡散と対流)の2つの確立された物理原理を微分方程式ネットワークとして表現する。
次に,物理知識をニューラルネットワークアーキテクチャに統合し,潜時表現を利用して大気質データ内の時空間関係をキャプチャするグラフ構造を用いる。
2つの実世界のベンチマークデータセットの実験によると、AirPhyNetは異なるリードタイム(24h, 48h, 72h)、スパースデータと突然の変化予測など、さまざまなテストシナリオの最先端モデルよりも優れており、予測エラーの最大10%削減を実現している。
さらに,本モデルが粒子運動の基盤となる物理過程を捉え,実際の物理的意味を持つ正確な予測を生成することを検証した。
関連論文リスト
- Air Quality Prediction with Physics-Informed Dual Neural ODEs in Open Systems [26.70737906860735]
大気汚染は人間の健康と生態系を著しく脅かし、公共政策を知らせるために効果的な大気質予測を必要とする。
伝統的なアプローチは一般に物理学に基づくモデルとデータ駆動モデルに分類される。
本稿では,ニューラルネットワークの2つの枝を統合した新しい物理インフォームドアプローチであるAirDualODEを提案する。
論文 参考訳(メタデータ) (2024-10-25T13:56:13Z) - TG-PhyNN: An Enhanced Physically-Aware Graph Neural Network framework for forecasting Spatio-Temporal Data [3.268628956733623]
この研究は、新しいテンポラルグラフ物理インフォームドニューラルネットワークフレームワークであるTG-PhyNNを提示する。
TG-PhyNNは、グラフベースのモデリングにGNNのパワーを活用しながら、トレーニング中に物理的な制約を指針原理として組み込む。
以上の結果から,TG-PhyNNは従来の予測モデルよりも有意に優れていた。
TG-PhyNNは、物理プロセスがデータのダイナミクスを制御しているさまざまな領域において、より信頼性が高く正確な予測を提供するために、効果的に活用する。
論文 参考訳(メタデータ) (2024-08-29T09:41:17Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
本稿では,時空間力学を推定する物理誘導型ニューラルネットワークを提案する。
また、物理状態をより正確にモデル化するための物理制約付き適応二階ルンゲ・クッタ法を提案する。
我々のモデルは最先端の手法より優れ、より少ないパラメータ数でデータセットで最高の性能を発揮する。
論文 参考訳(メタデータ) (2024-05-23T12:39:49Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Deep learning for spatio-temporal forecasting -- application to solar
energy [12.5097469793837]
この論文は、深い学習を伴う原則付き時間予測の主題に取り組む。
エレクトロニティ・ド・フランス(EDF)のモチベーション応用は、魚眼画像による短期的な太陽エネルギー予測である。
論文 参考訳(メタデータ) (2022-05-07T06:42:48Z) - Skillful Twelve Hour Precipitation Forecasts using Large Context Neural
Networks [8.086653045816151]
現在の運用予測モデルは物理に基づいており、大気をシミュレートするためにスーパーコンピュータを使用している。
ニューラルネットワークに基づく新しい気象モデルのクラスは、天気予報のパラダイムシフトを表している。
最大12時間前に降水予測が可能なニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-14T22:53:04Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
本稿では,SAR画像分類のための新しい物理誘導型ニューラルネットワークを提案する。
提案フレームワークは,(1)既存の説明可能なモデルを用いて物理誘導信号を生成すること,(2)物理誘導ネットワークを用いた物理認識特徴を学習すること,(3)従来の分類深層学習モデルに適応的に物理認識特徴を注入すること,の3つの部分からなる。
実験の結果,提案手法はデータ駆動型CNNと比較して,分類性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-10-27T03:30:18Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
人間は、物体の物理的特性を直感的に認識し、複雑な相互作用に従事している場合でも、その動きを予測する。
我々は、物理を同時に推論し、視覚と力学の先行に基づく将来の予測を行うニューラルモデルを提案する。
実験により、我々のモデルはいくつかの観測範囲内で物理的特性を推測できることが示され、モデルが目に見えないシナリオに迅速に適応し、将来正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-04-28T17:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。