論文の概要: Deep learning for spatio-temporal forecasting -- application to solar
energy
- arxiv url: http://arxiv.org/abs/2205.03571v1
- Date: Sat, 7 May 2022 06:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-15 09:57:02.206700
- Title: Deep learning for spatio-temporal forecasting -- application to solar
energy
- Title(参考訳): 時空間予測のための深層学習 --太陽エネルギーへの応用
- Authors: Vincent Le Guen
- Abstract要約: この論文は、深い学習を伴う原則付き時間予測の主題に取り組む。
エレクトロニティ・ド・フランス(EDF)のモチベーション応用は、魚眼画像による短期的な太陽エネルギー予測である。
- 参考スコア(独自算出の注目度): 12.5097469793837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis tackles the subject of spatio-temporal forecasting with deep
learning. The motivating application at Electricity de France (EDF) is
short-term solar energy forecasting with fisheye images. We explore two main
research directions for improving deep forecasting methods by injecting
external physical knowledge. The first direction concerns the role of the
training loss function. We show that differentiable shape and temporal criteria
can be leveraged to improve the performances of existing models. We address
both the deterministic context with the proposed DILATE loss function and the
probabilistic context with the STRIPE model. Our second direction is to augment
incomplete physical models with deep data-driven networks for accurate
forecasting. For video prediction, we introduce the PhyDNet model that
disentangles physical dynamics from residual information necessary for
prediction, such as texture or details. We further propose a learning framework
(APHYNITY) that ensures a principled and unique linear decomposition between
physical and data-driven components under mild assumptions, leading to better
forecasting performances and parameter identification.
- Abstract(参考訳): この論文は、深層学習による時空間予測の主題に取り組む。
EDF(Electricity de France)のモチベーション応用は、魚眼画像による短期的な太陽エネルギー予測である。
外部の物理知識を注入して深部予測法を改善するための2つの研究方向を探る。
第1の方向は、トレーニング損失機能の役割に関するものである。
既存のモデルの性能向上のために,識別可能な形状と時間的基準を活用できることが示される。
本稿では,DILATE損失関数を用いた決定論的文脈と,STRIPEモデルによる確率的文脈の両方に対処する。
第2の方向は、正確な予測のために、不完全な物理モデルと深いデータ駆動ネットワークを強化することです。
映像予測には,テクスチャやディテールなどの予測に必要な残差情報から物理力学を分離するPhyDNetモデルを導入する。
さらに本研究では,物理・データ駆動コンポーネント間の線形分解を軽微な仮定で保証する学習フレームワーク(APHYNITY)を提案し,予測性能とパラメータ同定を向上する。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction [40.58819011476455]
本稿では,空気質予測のための物理誘導ニューラルネットワーク(AirPhyNet)という新しいアプローチを提案する。
我々は、空気粒子移動(拡散と対流)の2つの確立された物理原理を微分方程式ネットワークとして表現することで活用する。
2つの実世界のベンチマークデータセットの実験では、AirPhyNetがさまざまなテストシナリオの最先端モデルを上回っていることが示されている。
論文 参考訳(メタデータ) (2024-02-06T07:55:54Z) - PreDiff: Precipitation Nowcasting with Latent Diffusion Models [28.52267957954304]
確率的予測が可能な条件付き潜伏拡散モデルを開発した。
予測をドメイン固有の物理的制約と整合させるために、明示的な知識アライメント機構を組み込んだ。
論文 参考訳(メタデータ) (2023-07-19T19:19:13Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
短期負荷予測(STLF)は電力グリッドとエネルギー市場の効果的かつ経済的な運用に不可欠である。
STLFの文献ではいくつかのディープラーニングモデルが提案されており、有望な結果を報告している。
論文 参考訳(メタデータ) (2023-02-23T17:11:04Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
本稿では,SAR画像分類のための新しい物理誘導型ニューラルネットワークを提案する。
提案フレームワークは,(1)既存の説明可能なモデルを用いて物理誘導信号を生成すること,(2)物理誘導ネットワークを用いた物理認識特徴を学習すること,(3)従来の分類深層学習モデルに適応的に物理認識特徴を注入すること,の3つの部分からなる。
実験の結果,提案手法はデータ駆動型CNNと比較して,分類性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-10-27T03:30:18Z) - An Interpretable Probabilistic Model for Short-Term Solar Power
Forecasting Using Natural Gradient Boosting [0.0]
本稿では,高精度で信頼性が高く,鋭い予測を生成できる2段階確率予測フレームワークを提案する。
このフレームワークは、ポイント予測と予測間隔(PI)の両方について完全な透明性を提供する。
提案フレームワークの性能と適用性を強調するため,南ドイツにある2つのPV公園の実際のデータを用いている。
論文 参考訳(メタデータ) (2021-08-05T12:59:38Z) - Deep learning for improved global precipitation in numerical weather
prediction systems [1.721029532201972]
我々は、残差学習を用いた深層畳み込みニューラルネットワークのUNETアーキテクチャを、グローバルな降水モデルを学ぶための概念実証として使用しています。
その結果,インド気象局が使用した操作力学モデルと比較した。
この研究は、残差学習に基づくUNETが、目標降水量と物理的関係を解き放つことができることを示す概念実証である。
論文 参考訳(メタデータ) (2021-06-20T05:10:42Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。