論文の概要: Quantized Approximately Orthogonal Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2402.04012v2
- Date: Mon, 10 Jun 2024 11:40:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 03:39:46.105111
- Title: Quantized Approximately Orthogonal Recurrent Neural Networks
- Title(参考訳): 量子化された約直交リカレントニューラルネットワーク
- Authors: Armand Foucault, Franck Mamalet, François Malgouyres,
- Abstract要約: ORNNにおける重み行列の量子化を探求し、ほぼ直交RNN(QORNN)を量子化する。
本稿では,量子化学習(QAT)と計算予測を組み合わせた2つのQORNN学習手法を提案する。
最も効率的なモデルは、4ビットの量子化であっても、様々な標準ベンチマークで最先端のフル精度ORNN、LSTM、FastRNNと同様の結果が得られる。
- 参考スコア(独自算出の注目度): 6.524758376347808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Orthogonal Recurrent Neural Networks (ORNNs) have gained popularity due to their ability to manage tasks involving long-term dependencies, such as the copy-task, and their linear complexity. However, existing ORNNs utilize full precision weights and activations, which prevents their deployment on compact devices.In this paper, we explore the quantization of the weight matrices in ORNNs, leading to Quantized approximately Orthogonal RNNs (QORNNs). The construction of such networks remained an open problem, acknowledged for its inherent instability. We propose and investigate two strategies to learn QORNN by combining quantization-aware training (QAT) and orthogonal projections. We also study post-training quantization of the activations for pure integer computation of the recurrent loop. The most efficient models achieve results similar to state-of-the-art full-precision ORNN, LSTM and FastRNN on a variety of standard benchmarks, even with 4-bits quantization.
- Abstract(参考訳): 近年,コピータスクや線形複雑度など,長期的な依存関係に関わるタスクを管理する能力によって,オルソゴンリカレントニューラルネットワーク(ORNN)が人気を集めている。
しかし,既存のORNNでは,完全精度の重み付けとアクティベーションが利用されており,コンパクトデバイスへの展開を妨げているため,ORNNにおける重み付け行列の量子化が検討され,量子化されたほぼ直交RNN(QORNN)が実現される。
このようなネットワークの構築は未解決の問題であり、その固有の不安定さが認識された。
量子化対応学習(QAT)と直交投影を組み合わせた2つのQORNN学習手法を提案する。
また、リカレントループの純粋整数計算のためのアクティベーションのトレーニング後の量子化についても検討した。
最も効率的なモデルは、4ビットの量子化であっても、様々な標準ベンチマークで最先端のフル精度ORNN、LSTM、FastRNNと同様の結果が得られる。
関連論文リスト
- An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Training Integer-Only Deep Recurrent Neural Networks [3.1829446824051195]
精度の高い整数専用リカレントニューラルネットワーク(iRNN)を得るための量子化学習法を提案する。
本手法は, 層正規化, 注意, アクティベーション関数の適応的片方向線形(PWL)近似をサポートする。
提案手法により,RNNベースの言語モデルでエッジデバイス上で実行可能である。
論文 参考訳(メタデータ) (2022-12-22T15:22:36Z) - QVIP: An ILP-based Formal Verification Approach for Quantized Neural
Networks [14.766917269393865]
量子化は、浮動小数点数に匹敵する精度でニューラルネットワークのサイズを減らすための有望な技術として登場した。
そこで本研究では,QNNに対する新しい,効率的な形式検証手法を提案する。
特に、QNNの検証問題を整数線形制約の解法に還元する符号化を初めて提案する。
論文 参考訳(メタデータ) (2022-12-10T03:00:29Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars [4.184276171116354]
ニューラルネットワークの低消費電力代替としてスパイキングニューラルネットワーク(SNN)が登場している。
本研究では,SNNの性能に及ぼすクロスバー非理想性と本質性の影響について検討した。
論文 参考訳(メタデータ) (2022-06-20T07:07:41Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - A Time Encoding approach to training Spiking Neural Networks [3.655021726150368]
スパイキングニューラルネットワーク(SNN)の人気が高まっている。
本稿では、時間符号化理論を用いて、SNNの理解と学習を支援する余分なツールを提供する。
論文 参考訳(メタデータ) (2021-10-13T14:07:11Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。