論文の概要: Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars
- arxiv url: http://arxiv.org/abs/2206.09599v1
- Date: Mon, 20 Jun 2022 07:07:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-26 14:51:08.978594
- Title: Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars
- Title(参考訳): 非理想交叉におけるスパイクニューラルネットワークのロバスト性の検討
- Authors: Abhiroop Bhattacharjee, Youngeun Kim, Abhishek Moitra, and
Priyadarshini Panda
- Abstract要約: ニューラルネットワークの低消費電力代替としてスパイキングニューラルネットワーク(SNN)が登場している。
本研究では,SNNの性能に及ぼすクロスバー非理想性と本質性の影響について検討した。
- 参考スコア(独自算出の注目度): 4.184276171116354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) have recently emerged as the low-power
alternative to Artificial Neural Networks (ANNs) owing to their asynchronous,
sparse, and binary information processing. To improve the energy-efficiency and
throughput, SNNs can be implemented on memristive crossbars where
Multiply-and-Accumulate (MAC) operations are realized in the analog domain
using emerging Non-Volatile-Memory (NVM) devices. Despite the compatibility of
SNNs with memristive crossbars, there is little attention to study on the
effect of intrinsic crossbar non-idealities and stochasticity on the
performance of SNNs. In this paper, we conduct a comprehensive analysis of the
robustness of SNNs on non-ideal crossbars. We examine SNNs trained via learning
algorithms such as, surrogate gradient and ANN-SNN conversion. Our results show
that repetitive crossbar computations across multiple time-steps induce error
accumulation, resulting in a huge performance drop during SNN inference. We
further show that SNNs trained with a smaller number of time-steps achieve
better accuracy when deployed on memristive crossbars.
- Abstract(参考訳): Spiking Neural Networks(SNN)は、最近、非同期、スパース、バイナリ情報処理のため、Artificial Neural Networks(ANN)の低消費電力代替として登場した。
省エネ性とスループットを向上させるため、SNNはMultiply-and-Accumulate (MAC)操作をアナログ領域で実現し、新たなNVM(Non-Volatile-Memory)デバイスで実装することができる。
SNNと間欠的クロスバーとの互換性にもかかわらず、本質的クロスバーの非理想性と確率性がSNNの性能に及ぼす影響についてはほとんど研究されていない。
本稿では,非理想的クロスバー上でのSNNのロバスト性を包括的に解析する。
本研究では,SNNの学習アルゴリズムを用いて学習したSNNについて検討する。
以上の結果から,複数ステップにわたる繰り返しクロスバー計算は誤りの蓄積を招き,SNN推論における性能低下を招いた。
さらに,少ない時間ステップで訓練したSNNは,間欠的なクロスバーに展開する際の精度が向上することを示す。
関連論文リスト
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
スパイキングニューラルネットワーク(SNN)は、そのユニークな神経力学と低出力の性質により、広く注目を集めている。
以前の研究では、Poissonコーディングを持つSNNは、小規模データセット上のArtificial Neural Networks(ANN)よりも堅牢であることが実証されている。
この研究は理論上、SNNの固有の対向ロバスト性はポアソン符号に由来することを証明している。
論文 参考訳(メタデータ) (2024-07-29T15:26:15Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Beyond Classification: Directly Training Spiking Neural Networks for
Semantic Segmentation [5.800785186389827]
ニューラルネットワークの低消費電力代替としてスパイキングニューラルネットワーク(SNN)が登場している。
本稿では,ニューロンをスパイクしたセマンティックセグメンテーションネットワークの分類を超えて,SNNの応用について検討する。
論文 参考訳(メタデータ) (2021-10-14T21:53:03Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNNは、視覚オブジェクト追跡ベンチマークであるTB2013, VOT2016, GOT-10kにおいて、短いレイテンシと低い精度の損失を達成する最初のディープSNNトラッカーである。
SiamSNNは、ニューロモルフィックチップTrueNorth上で低エネルギー消費とリアルタイムを実現する。
論文 参考訳(メタデータ) (2020-03-17T08:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。