Quantized Approximately Orthogonal Recurrent Neural Networks
- URL: http://arxiv.org/abs/2402.04012v2
- Date: Mon, 10 Jun 2024 11:40:40 GMT
- Title: Quantized Approximately Orthogonal Recurrent Neural Networks
- Authors: Armand Foucault, Franck Mamalet, François Malgouyres,
- Abstract summary: We explore the quantization of the weight matrices in ORNNs, leading to Quantized approximately Orthogonal RNNs (QORNNs)
We propose and investigate two strategies to learn QORNN by combining quantization-aware training (QAT) and computation projections.
The most efficient models achieve results similar to state-of-the-art full-precision ORNN, LSTM and FastRNN on a variety of standard benchmarks, even with 4-bits quantization.
- Score: 6.524758376347808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Orthogonal Recurrent Neural Networks (ORNNs) have gained popularity due to their ability to manage tasks involving long-term dependencies, such as the copy-task, and their linear complexity. However, existing ORNNs utilize full precision weights and activations, which prevents their deployment on compact devices.In this paper, we explore the quantization of the weight matrices in ORNNs, leading to Quantized approximately Orthogonal RNNs (QORNNs). The construction of such networks remained an open problem, acknowledged for its inherent instability. We propose and investigate two strategies to learn QORNN by combining quantization-aware training (QAT) and orthogonal projections. We also study post-training quantization of the activations for pure integer computation of the recurrent loop. The most efficient models achieve results similar to state-of-the-art full-precision ORNN, LSTM and FastRNN on a variety of standard benchmarks, even with 4-bits quantization.
Related papers
- An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - Training Integer-Only Deep Recurrent Neural Networks [3.1829446824051195]
We present a quantization-aware training method for obtaining a highly accurate integer-only recurrent neural network (iRNN)
Our approach supports layer normalization, attention, and an adaptive piecewise linear (PWL) approximation of activation functions.
The proposed method enables RNN-based language models to run on edge devices with $2times$ improvement in runtime.
arXiv Detail & Related papers (2022-12-22T15:22:36Z) - QVIP: An ILP-based Formal Verification Approach for Quantized Neural
Networks [14.766917269393865]
Quantization has emerged as a promising technique to reduce the size of neural networks with comparable accuracy as their floating-point numbered counterparts.
We propose a novel and efficient formal verification approach for QNNs.
In particular, we are the first to propose an encoding that reduces the verification problem of QNNs into the solving of integer linear constraints.
arXiv Detail & Related papers (2022-12-10T03:00:29Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars [4.184276171116354]
Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
We study the effect of crossbar non-idealities and intrinsicity on the performance of SNNs.
arXiv Detail & Related papers (2022-06-20T07:07:41Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
This paper presents a novel method to train quantized RNNLMs from scratch using alternating direction methods of multipliers (ADMM)
Experiments on two tasks suggest the proposed ADMM quantization achieved a model size compression factor of up to 31 times over the full precision baseline RNNLMs.
arXiv Detail & Related papers (2021-11-29T09:30:06Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - A Time Encoding approach to training Spiking Neural Networks [3.655021726150368]
Spiking Neural Networks (SNNs) have been gaining in popularity.
In this paper, we provide an extra tool to help us understand and train SNNs by using theory from the field of time encoding.
arXiv Detail & Related papers (2021-10-13T14:07:11Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.