TopoNav: Topological Navigation for Efficient Exploration in Sparse Reward Environments
- URL: http://arxiv.org/abs/2402.04061v2
- Date: Wed, 27 Mar 2024 21:01:24 GMT
- Title: TopoNav: Topological Navigation for Efficient Exploration in Sparse Reward Environments
- Authors: Jumman Hossain, Abu-Zaher Faridee, Nirmalya Roy, Jade Freeman, Timothy Gregory, Theron T. Trout,
- Abstract summary: TopoNav is a novel framework for efficient goal-oriented exploration and navigation in sparse-reward settings.
TopoNav dynamically constructs a topological map of the environment, capturing key locations and pathways.
We evaluate TopoNav both in the simulated and real-world off-road environments using a Clearpath Jackal robot.
- Score: 0.6597195879147555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous robots exploring unknown environments face a significant challenge: navigating effectively without prior maps and with limited external feedback. This challenge intensifies in sparse reward environments, where traditional exploration techniques often fail. In this paper, we present TopoNav, a novel topological navigation framework that integrates active mapping, hierarchical reinforcement learning, and intrinsic motivation to enable efficient goal-oriented exploration and navigation in sparse-reward settings. TopoNav dynamically constructs a topological map of the environment, capturing key locations and pathways. A two-level hierarchical policy architecture, comprising a high-level graph traversal policy and low-level motion control policies, enables effective navigation and obstacle avoidance while maintaining focus on the overall goal. Additionally, TopoNav incorporates intrinsic motivation to guide exploration toward relevant regions and frontier nodes in the topological map, addressing the challenges of sparse extrinsic rewards. We evaluate TopoNav both in the simulated and real-world off-road environments using a Clearpath Jackal robot, across three challenging navigation scenarios: goal-reaching, feature-based navigation, and navigation in complex terrains. We observe an increase in exploration coverage by 7- 20%, in success rates by 9-19%, and reductions in navigation times by 15-36% across various scenarios, compared to state-of-the-art methods
Related papers
- Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning [62.186340267690824]
Existing studies on geomagnetic navigation rely on pre-stored map or extensive searches, leading to limited applicability or reduced navigation efficiency in unexplored areas.
This paper develops a deep reinforcement learning (DRL)-based mechanism, especially for long-distance geomagnetic navigation.
The designed mechanism trains an agent to learn and gain the magnetoreception capacity for geomagnetic navigation, rather than using any pre-stored map or extensive and expensive searching approaches.
arXiv Detail & Related papers (2024-10-21T09:57:42Z) - TOP-Nav: Legged Navigation Integrating Terrain, Obstacle and Proprioception Estimation [5.484041860401147]
TOP-Nav is a novel legged navigation framework that integrates a comprehensive path planner with Terrain awareness, Obstacle avoidance and close-loop Proprioception.
We show that TOP-Nav achieves open-world navigation that the robot can handle terrains or disturbances beyond the distribution of prior knowledge.
arXiv Detail & Related papers (2024-04-23T17:42:45Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Long-HOT: A Modular Hierarchical Approach for Long-Horizon Object
Transport [83.06265788137443]
We address key challenges in long-horizon embodied exploration and navigation by proposing a new object transport task and a novel modular framework for temporally extended navigation.
Our first contribution is the design of a novel Long-HOT environment focused on deep exploration and long-horizon planning.
We propose a modular hierarchical transport policy (HTP) that builds a topological graph of the scene to perform exploration with the help of weighted frontiers.
arXiv Detail & Related papers (2022-10-28T05:30:49Z) - Uncertainty-driven Planner for Exploration and Navigation [36.933903274373336]
We consider the problems of exploration and point-goal navigation in previously unseen environments.
We argue that learning occupancy priors over indoor maps provides significant advantages towards addressing these problems.
We present a novel planning framework that first learns to generate occupancy maps beyond the field-of-view of the agent.
arXiv Detail & Related papers (2022-02-24T05:25:31Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
We propose an augmented reality navigation system for visual prosthesis that incorporates a software of reactive navigation and path planning.
It consists on four steps: locating the subject on a map, planning the subject trajectory, showing it to the subject and re-planning without obstacles.
Results show how our augmented navigation system help navigation performance by reducing the time and distance to reach the goals, even significantly reducing the number of obstacles collisions.
arXiv Detail & Related papers (2021-09-30T09:41:40Z) - Deep Reinforcement Learning for Adaptive Exploration of Unknown
Environments [6.90777229452271]
We develop an adaptive exploration approach to trade off between exploration and exploitation in one single step for UAVs.
The proposed approach uses a map segmentation technique to decompose the environment map into smaller, tractable maps.
The results demonstrate that our proposed approach is capable of navigating through randomly generated environments and covering more AoI in less time steps compared to the baselines.
arXiv Detail & Related papers (2021-05-04T16:29:44Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
Vision-language navigation (VLN) is the task of entailing an agent to carry out navigational instructions inside photo-realistic environments.
One of the key challenges in VLN is how to conduct a robust navigation by mitigating the uncertainty caused by ambiguous instructions and insufficient observation of the environment.
This work draws inspiration from human navigation behavior and endows an agent with an active information gathering ability for a more intelligent VLN policy.
arXiv Detail & Related papers (2020-07-15T23:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.