SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning
- URL: http://arxiv.org/abs/2402.04114v2
- Date: Mon, 27 May 2024 08:13:02 GMT
- Title: SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning
- Authors: Paul Mangold, Sergey Samsonov, Safwan Labbi, Ilya Levin, Reda Alami, Alexey Naumov, Eric Moulines,
- Abstract summary: We show that the communication complexity of FedLSA scales with the inverse of the desired accuracy.
An important finding is that, compared to the existing results for Scaffnew, the sample complexity scales with the inverse of the number of agents.
- Score: 14.663513734368628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we analyze the sample and communication complexity of the federated linear stochastic approximation (FedLSA) algorithm. We explicitly quantify the effects of local training with agent heterogeneity. We show that the communication complexity of FedLSA scales polynomially with the inverse of the desired accuracy $\epsilon$. To overcome this, we propose SCAFFLSA a new variant of FedLSA that uses control variates to correct for client drift, and establish its sample and communication complexities. We show that for statistically heterogeneous agents, its communication complexity scales logarithmically with the desired accuracy, similar to Scaffnew. An important finding is that, compared to the existing results for Scaffnew, the sample complexity scales with the inverse of the number of agents, a property referred to as linear speed-up. Achieving this linear speed-up requires completely new theoretical arguments. We apply the proposed method to federated temporal difference learning with linear function approximation and analyze the corresponding complexity improvements.
Related papers
- Shuffled Linear Regression via Spectral Matching [6.24954299842136]
Shuffled linear regression seeks to estimate latent features through a linear transformation.
This problem extends traditional least-squares (LS) and Least Absolute Shrinkage and Selection Operator (LASSO) approaches.
We propose a spectral matching method that efficiently resolves permutations.
arXiv Detail & Related papers (2024-09-30T16:26:40Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems.
We analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity.
arXiv Detail & Related papers (2024-08-25T04:07:18Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning [8.632943870358627]
Federated reinforcement learning (FRL) has emerged as a promising paradigm for reducing the sample complexity of reinforcement learning tasks.
We introduce FedSARSA, a novel on-policy reinforcement learning scheme equipped with linear function approximation.
We show that FedSARSA converges to a policy that is near-optimal for all agents, with the extent of near-optimality proportional to the level of heterogeneity.
arXiv Detail & Related papers (2024-01-27T02:43:45Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - Fitted Value Iteration Methods for Bicausal Optimal Transport [4.459996749171579]
We develop a fitted value iteration (FVI) method to compute bicausal optimal transport (OT)
Based on the dynamic programming formulation, FVI adopts a function class to approximate the value functions in bicausal OT.
We demonstrate that multilayer neural networks with appropriate structures satisfy the crucial assumptions required in sample complexity proofs.
arXiv Detail & Related papers (2023-06-22T03:55:36Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
We introduce a new scalable approximation for Gaussian processes with provable guarantees which hold simultaneously over its entire parameter space.
Our approximation is obtained from an improved sample complexity analysis for sparse spectrum Gaussian processes (SSGPs)
arXiv Detail & Related papers (2020-11-17T05:41:50Z) - Semi-analytic approximate stability selection for correlated data in
generalized linear models [3.42658286826597]
We propose a novel approximate inference algorithm that can conduct Stability Selection without the repeated fitting.
The algorithm is based on the replica method of statistical mechanics and vector approximate message passing of information theory.
Numerical experiments indicate that the algorithm exhibits fast convergence and high approximation accuracy for both synthetic and real-world data.
arXiv Detail & Related papers (2020-03-19T10:43:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.