Personality Trait Recognition using ECG Spectrograms and Deep Learning
- URL: http://arxiv.org/abs/2402.04326v1
- Date: Tue, 6 Feb 2024 19:09:44 GMT
- Title: Personality Trait Recognition using ECG Spectrograms and Deep Learning
- Authors: Muhammad Mohsin Altaf, Saadat Ullah Khan, Muhammad Majd, Syed Muhammad
Anwar
- Abstract summary: This paper presents an innovative approach to recognizing personality traits using deep learning (DL) methods applied to electrocardiogram (ECG) signals.
Within the framework of detecting the big five personality traits model encompassing extra-version, neuroticism, agreeableness, conscientiousness, and openness, the research explores the potential of ECG-derived spectrograms as informative features.
- Score: 6.6157730528755065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an innovative approach to recognizing personality traits
using deep learning (DL) methods applied to electrocardiogram (ECG) signals.
Within the framework of detecting the big five personality traits model
encompassing extra-version, neuroticism, agreeableness, conscientiousness, and
openness, the research explores the potential of ECG-derived spectrograms as
informative features. Optimal window sizes for spectrogram generation are
determined, and a convolutional neural network (CNN), specifically Resnet-18,
and visual transformer (ViT) are employed for feature extraction and
personality trait classification. The study utilizes the publicly available
ASCERTAIN dataset, which comprises various physiological signals, including ECG
recordings, collected from 58 participants during the presentation of video
stimuli categorized by valence and arousal levels. The outcomes of this study
demonstrate noteworthy performance in personality trait classification,
consistently achieving F1-scores exceeding 0.9 across different window sizes
and personality traits. These results emphasize the viability of ECG signal
spectrograms as a valuable modality for personality trait recognition, with
Resnet-18 exhibiting effectiveness in discerning distinct personality traits.
Related papers
- CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.
Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.
The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - Feature Estimation of Global Language Processing in EEG Using Attention Maps [5.173821279121835]
This study introduces a novel approach to EEG feature estimation that utilizes the weights of deep learning models to explore this association.
We demonstrate that attention maps generated from Vision Transformers and EEGNet effectively identify features that align with findings from prior studies.
The application of Mel-Spectrogram with ViTs enhances the resolution of temporal and frequency-related EEG characteristics.
arXiv Detail & Related papers (2024-09-27T22:52:31Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Deep-seeded Clustering for Emotion Recognition from Wearable Physiological Sensors [1.380698851850167]
We propose and test a deep-seeded clustering algorithm that automatically extracts and classifies features from physiological signals with minimal supervision.
We show that the model obtains good performance results across three different datasets frequently used in affective computing studies.
arXiv Detail & Related papers (2023-08-17T14:37:35Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification.
An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features.
arXiv Detail & Related papers (2022-10-31T07:36:48Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
arXiv Detail & Related papers (2022-08-02T03:14:13Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
We develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification.
Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject recognition.
arXiv Detail & Related papers (2021-05-30T14:47:20Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - An Evoked Potential-Guided Deep Learning Brain Representation For Visual
Classification [19.587477797948683]
We propose a deep learning framework guided by the visual evoked potentials, called the Event-Related Potential (ERP)-Long short-term memory (LSTM) framework.
Our results showed that our proposed ERP-LSTM framework could achieve classification accuracies of 66.81% and 27.08% for categories (6 classes) and exemplars (72 classes)
Our findings suggested that decoding visual evoked potentials from EEG signals is an effective strategy to learn discriminative brain representations for visual classification.
arXiv Detail & Related papers (2020-06-27T12:46:31Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.