Delving into temperature scaling for adaptive conformal prediction
- URL: http://arxiv.org/abs/2402.04344v2
- Date: Tue, 08 Oct 2024 09:33:47 GMT
- Title: Delving into temperature scaling for adaptive conformal prediction
- Authors: Huajun Xi, Jianguo Huang, Kangdao Liu, Lei Feng, Hongxin Wei,
- Abstract summary: Conformal prediction, as an emerging uncertainty qualification technique, constructs prediction sets that are guaranteed to contain the true label with pre-defined probability.
We show that current confidence calibration methods (e.g., temperature scaling) normally lead to larger prediction sets in adaptive conformal prediction.
We propose $Conformal$ $Temperature$ $Scaling$ (ConfTS), a variant of temperature scaling that aims to improve the efficiency of adaptive conformal prediction.
- Score: 10.340903334800787
- License:
- Abstract: Conformal prediction, as an emerging uncertainty qualification technique, constructs prediction sets that are guaranteed to contain the true label with pre-defined probability. Previous works often employ temperature scaling to calibrate the classifier, assuming that confidence calibration can benefit conformal prediction. In this work, we empirically show that current confidence calibration methods (e.g., temperature scaling) normally lead to larger prediction sets in adaptive conformal prediction. Theoretically, we prove that a prediction with higher confidence could result in a smaller prediction set on expectation. Inspired by the analysis, we propose $Conformal$ $Temperature$ $Scaling$ (ConfTS), a variant of temperature scaling that aims to improve the efficiency of adaptive conformal prediction. Specifically, ConfTS optimizes the temperature value by minimizing the gap between the threshold and the non-conformity score of the ground truth for a held-out validation dataset. In this way, the temperature value obtained would lead to an optimal set of high efficiency without violating the marginal coverage property. Extensive experiments demonstrate that our method can effectively enhance adaptive conformal prediction methods in both efficiency and conditional coverage, reducing the average size of APS and RAPS by nearly 50$\%$ on ImageNet at error rate $\alpha=0.1$.
Related papers
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Calibrating Language Models with Adaptive Temperature Scaling [58.056023173579625]
We introduce Adaptive Temperature Scaling (ATS), a post-hoc calibration method that predicts a temperature scaling parameter for each token prediction.
ATS improves calibration by over 10-50% across three downstream natural language evaluation benchmarks compared to prior calibration methods.
arXiv Detail & Related papers (2024-09-29T22:54:31Z) - Domain-adaptive and Subgroup-specific Cascaded Temperature Regression
for Out-of-distribution Calibration [16.930766717110053]
We propose a novel meta-set-based cascaded temperature regression method for post-hoc calibration.
We partition each meta-set into subgroups based on predicted category and confidence level, capturing diverse uncertainties.
A regression network is then trained to derive category-specific and confidence-level-specific scaling, achieving calibration across meta-sets.
arXiv Detail & Related papers (2024-02-14T14:35:57Z) - On Temperature Scaling and Conformal Prediction of Deep Classifiers [9.975341265604577]
Two popular approaches for that aim are: 1): modifies the classifier's softmax values such that the maximal value better estimates the correctness probability; and 2) Conformal Prediction (CP): produces a prediction set of candidate labels that contains the true label with a user-specified probability.
In practice, both types of indications are desirable, yet, so far the interplay between them has not been investigated.
arXiv Detail & Related papers (2024-02-08T16:45:12Z) - Conformal Prediction for Deep Classifier via Label Ranking [29.784336674173616]
Conformal prediction is a statistical framework that generates prediction sets with a desired coverage guarantee.
We propose a novel algorithm named $textitSorted Adaptive Prediction Sets$ (SAPS)
SAPS discards all the probability values except for the maximum softmax probability.
arXiv Detail & Related papers (2023-10-10T08:54:14Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Optimized conformal classification using gradient descent approximation [0.2538209532048866]
Conformal predictors allow predictions to be made with a user-defined confidence level.
We consider an approach to train the conformal predictor directly with maximum predictive efficiency.
We test the method on several real world data sets and find that the method is promising.
arXiv Detail & Related papers (2021-05-24T13:14:41Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.