IoT Network Traffic Analysis with Deep Learning
- URL: http://arxiv.org/abs/2402.04469v1
- Date: Tue, 6 Feb 2024 23:28:15 GMT
- Title: IoT Network Traffic Analysis with Deep Learning
- Authors: Mei Liu and Leon Yang
- Abstract summary: We conduct a literature review on the most recent works using deep learning techniques and implement a model using ensemble techniques on the KDD Cup 99 dataset.
The experimental results showcase the impressive performance of our deep anomaly detection model, achieving an accuracy of over 98%.
- Score: 8.998282428714797
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As IoT networks become more complex and generate massive amounts of dynamic
data, it is difficult to monitor and detect anomalies using traditional
statistical methods and machine learning methods. Deep learning algorithms can
process and learn from large amounts of data and can also be trained using
unsupervised learning techniques, meaning they don't require labelled data to
detect anomalies. This makes it possible to detect new and unknown anomalies
that may not have been detected before. Also, deep learning algorithms can be
automated and highly scalable; thereby, they can run continuously in the
backend and make it achievable to monitor large IoT networks instantly. In this
work, we conduct a literature review on the most recent works using deep
learning techniques and implement a model using ensemble techniques on the KDD
Cup 99 dataset. The experimental results showcase the impressive performance of
our deep anomaly detection model, achieving an accuracy of over 98\%.
Related papers
- Systematic review, analysis, and characterisation of malicious industrial network traffic datasets for aiding Machine Learning algorithm performance testing [0.0]
This paper systematically reviews publicly available network traffic capture-based datasets.
It includes categorisation of contained attack types, review of metadata, and statistical as well as complexity analysis.
It provides researchers with metadata that can be used to select the best dataset for their research question.
arXiv Detail & Related papers (2024-05-08T07:48:40Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Unsupervised Anomaly Detection via Nonlinear Manifold Learning [0.0]
Anomalies are samples that significantly deviate from the rest of the data and their detection plays a major role in building machine learning models.
We introduce a robust, efficient, and interpretable methodology based on nonlinear manifold learning to detect anomalies in unsupervised settings.
arXiv Detail & Related papers (2023-06-15T18:48:10Z) - Network Anomaly Detection Using Federated Learning [0.483420384410068]
We introduce a robust and scalable framework that enables efficient network anomaly detection.
We leverage federated learning, in which multiple participants train a global model jointly.
The proposed method performs better than baseline machine learning techniques on the UNSW-NB15 data set.
arXiv Detail & Related papers (2023-03-13T20:16:30Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
We show how to use pre-trained convolutional neural net models to perform feature extraction and context mining.
We derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method.
arXiv Detail & Related papers (2020-10-06T00:26:14Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Any-Shot Sequential Anomaly Detection in Surveillance Videos [36.24563211765782]
We propose an online anomaly detection method for surveillance videos using transfer learning and any-shot learning.
Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning and the any-shot learning capability of statistical detection methods.
arXiv Detail & Related papers (2020-04-05T02:15:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.