論文の概要: Grandmaster-Level Chess Without Search
- arxiv url: http://arxiv.org/abs/2402.04494v1
- Date: Wed, 7 Feb 2024 00:36:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 17:20:01.552569
- Title: Grandmaster-Level Chess Without Search
- Title(参考訳): 検索なしのグランドマスターレベルチェス
- Authors: Anian Ruoss, Gr\'egoire Del\'etang, Sourabh Medapati, Jordi Grau-Moya,
Li Kevin Wenliang, Elliot Catt, John Reid, Tim Genewein
- Abstract要約: 我々は、1000万のチェスゲームのデータセットに基づいて教師付き学習を伴うモデルを訓練する。
われわれの最大のモデルは2895年のリチェス・ブリッツ・エロ(Lichess blitz Elo)に到達した。
モデルとデータセットのサイズを体系的に調べると、強力なチェスのパフォーマンスは十分な規模でしか発生しない。
- 参考スコア(独自算出の注目度): 9.5790772976207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent breakthrough successes in machine learning are mainly attributed
to scale: namely large-scale attention-based architectures and datasets of
unprecedented scale. This paper investigates the impact of training at scale
for chess. Unlike traditional chess engines that rely on complex heuristics,
explicit search, or a combination of both, we train a 270M parameter
transformer model with supervised learning on a dataset of 10 million chess
games. We annotate each board in the dataset with action-values provided by the
powerful Stockfish 16 engine, leading to roughly 15 billion data points. Our
largest model reaches a Lichess blitz Elo of 2895 against humans, and
successfully solves a series of challenging chess puzzles, without any
domain-specific tweaks or explicit search algorithms. We also show that our
model outperforms AlphaZero's policy and value networks (without MCTS) and
GPT-3.5-turbo-instruct. A systematic investigation of model and dataset size
shows that strong chess performance only arises at sufficient scale. To
validate our results, we perform an extensive series of ablations of design
choices and hyperparameters.
- Abstract(参考訳): 機械学習における最近の画期的な成功は主に、大規模な注目ベースのアーキテクチャと前例のない規模のデータセットである。
本稿では,チェスにおける大規模トレーニングの効果について検討する。
複雑なヒューリスティック、明示的な検索、あるいはそれらの組み合わせに依存する従来のチェスエンジンとは異なり、1000万のチェスゲームのデータセットで教師付き学習を行う270mパラメータトランスフォーマーモデルをトレーニングします。
データセットの各ボードに強力なStockfish 16エンジンが提供するアクション値をアノテートして,およそ150億のデータポイントを達成しました。
われわれの最大のモデルは2895年のLichess blitz Eloに到達し、いくつかの難解なチェスパズルを、ドメイン固有の調整や明確な検索アルゴリズムなしで解決する。
また,本モデルがAlphaZeroのポリシーと価値ネットワーク(MCTSなし)とGPT-3.5-turbo-インストラクションより優れていることを示す。
モデルとデータセットのサイズを体系的に調べると、強力なチェスのパフォーマンスは十分な規模でしか発生しない。
結果を検証するため,我々は設計選択とハイパーパラメータの広範囲なアブレーションを行う。
関連論文リスト
- Explore the Reasoning Capability of LLMs in the Chess Testbed [45.12891789312405]
我々は,注釈付き戦略と戦術を統合することで,チェスにおける大規模言語モデルの推論能力を向上させることを提案する。
我々はLLaMA-3-8Bモデルを微調整し、より優れたチェスの動きを選択するタスクにおいて、最先端の商用言語モデルと比較する。
論文 参考訳(メタデータ) (2024-11-11T01:42:56Z) - Predicting Chess Puzzle Difficulty with Transformers [0.0]
GlickFormerは,Glicko-2レーティングシステムを用いて,チェスパズルの難易度を予測するトランスフォーマーアーキテクチャである。
提案モデルでは,空間的特徴抽出にChessFormerのバックボーンを改良し,分解変換技術を用いて時間情報を組み込んだ。
結果は、GlickFormerのパフォーマンスが、最先端のChessFormerベースラインと比較して、複数のメトリクスにわたって優れていることを示している。
論文 参考訳(メタデータ) (2024-10-14T20:39:02Z) - End-to-End Chess Recognition [11.15543089335477]
現在のアプローチでは、チェスボードの検出、平方ローカライゼーション、ピース分類といった独立した独立したモジュールのパイプラインを使用している。
本稿では、画像から構成を直接予測するエンドツーエンドアプローチについて検討し、シーケンシャルアプローチのエラー蓄積を回避する。
合成レンダリングされ、角度が限られている既存のデータセットとは対照的に、ChessReDはスマートフォンカメラを使ってさまざまな角度から撮影されている。
ChessReDのテスト画像の15.26%で、チェスのピースの構成を認識することに成功した。
論文 参考訳(メタデータ) (2023-10-06T08:30:20Z) - Are AlphaZero-like Agents Robust to Adversarial Perturbations? [73.13944217915089]
AlphaZero(AZ)は、ニューラルネットワークベースのGo AIが人間のパフォーマンスを大きく上回ることを示した。
私たちは、Go AIが驚くほど間違った行動を起こさせる可能性のある、敵対的な状態が存在するかどうか尋ねる。
我々は、Go AIに対する最初の敵攻撃を開発し、探索空間を戦略的に減らし、効率よく敵の状態を探索する。
論文 参考訳(メタデータ) (2022-11-07T18:43:25Z) - Mastering the Game of Stratego with Model-Free Multiagent Reinforcement
Learning [86.37438204416435]
Strategoは、人工知能(AI)がまだマスターしていない数少ない象徴的なボードゲームの一つだ。
ストラテゴにおける決定は、行動と結果の間に明らかな結びつきがなく、多数の個別の行動に対してなされる。
DeepNashは、ストラテゴの既存の最先端AIメソッドを破り、Gravonゲームプラットフォームで年間(2022年)と最高3位を達成した。
論文 参考訳(メタデータ) (2022-06-30T15:53:19Z) - Measuring the Non-Transitivity in Chess [19.618609913302855]
我々は、人間のプレイヤーの実際のデータを通してチェスの非透過性を定量化する。
非透過性の度合いとチェス選手のレーティングの進行との間には強いつながりがある。
論文 参考訳(メタデータ) (2021-10-22T12:15:42Z) - Determining Chess Game State From an Image [19.06796946564999]
本稿では,既存のモデルよりも桁違いに大きい3次元モデルから合成した新しいデータセットについて述べる。
従来のコンピュータビジョン技術とディープラーニングを組み合わせた新しいエンドツーエンドチェス認識システムを紹介します。
記述されたシステムでは,テストセット上での誤差率は0.23%であり,現状の28倍である。
論文 参考訳(メタデータ) (2021-04-30T13:02:13Z) - Learning Chess Blindfolded: Evaluating Language Models on State Tracking [69.3794549747725]
私たちはチェスのゲームのための言語モデリングのタスクを検討します。
自然言語とは異なり、チェス表記法は単純で制約のある決定論的領域を記述する。
トランスフォーマー言語モデルでは,移動シーケンスのみを訓練することで,ピースの追跡や法的動作の予測を高精度に行うことができる。
論文 参考訳(メタデータ) (2021-02-26T01:16:23Z) - Learning to Play Imperfect-Information Games by Imitating an Oracle
Planner [77.67437357688316]
我々は、同時移動と大規模なステートアクションスペースでマルチプレイヤーの不完全な情報ゲームをプレイする学習を検討します。
我々のアプローチはモデルに基づく計画に基づいている。
我々は,Clash Royale と Pommerman のゲームにおいて,プランナーが効率的なプレイ戦略を発見することができることを示す。
論文 参考訳(メタデータ) (2020-12-22T17:29:57Z) - LiveChess2FEN: a Framework for Classifying Chess Pieces based on CNNs [0.0]
我々は,1秒未満で画像からチェス位置を自動的にデジタル化する機能的フレームワークを実装した。
チェスの駒の分類と組込みプラットフォーム上で効率的にマップする方法について、さまざまな畳み込みニューラルネットワークを分析した。
論文 参考訳(メタデータ) (2020-12-12T16:48:40Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。