E(3)-Equivariant Mesh Neural Networks
- URL: http://arxiv.org/abs/2402.04821v2
- Date: Mon, 19 Feb 2024 01:47:42 GMT
- Title: E(3)-Equivariant Mesh Neural Networks
- Authors: Thuan Trang, Nhat Khang Ngo, Daniel Levy, Thieu N. Vo, Siamak
Ravanbakhsh, Truong Son Hy
- Abstract summary: Triangular meshes are widely used to represent three-dimensional objects.
Many recent works have address the need for geometric deep learning on 3D mesh.
We extend the equations of E(n)-Equivariant Graph Neural Networks (EGNNs) to incorporate mesh face information.
The resulting architecture, Equivariant Mesh Neural Network (EMNN), outperforms other, more complicated equivariant methods on mesh tasks.
- Score: 16.158762988735322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Triangular meshes are widely used to represent three-dimensional objects. As
a result, many recent works have address the need for geometric deep learning
on 3D mesh. However, we observe that the complexities in many of these
architectures does not translate to practical performance, and simple deep
models for geometric graphs are competitive in practice. Motivated by this
observation, we minimally extend the update equations of E(n)-Equivariant Graph
Neural Networks (EGNNs) (Satorras et al., 2021) to incorporate mesh face
information, and further improve it to account for long-range interactions
through hierarchy. The resulting architecture, Equivariant Mesh Neural Network
(EMNN), outperforms other, more complicated equivariant methods on mesh tasks,
with a fast run-time and no expensive pre-processing. Our implementation is
available at https://github.com/HySonLab/EquiMesh
Related papers
- MeshXL: Neural Coordinate Field for Generative 3D Foundation Models [51.1972329762843]
We present a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches.
MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
arXiv Detail & Related papers (2024-05-31T14:35:35Z) - A new perspective on building efficient and expressive 3D equivariant
graph neural networks [39.0445472718248]
We propose a hierarchy of 3D isomorphism to evaluate the expressive power of equivariant GNNs.
Our work leads to two crucial modules for designing expressive and efficient geometric GNNs.
To demonstrate the applicability of our theory, we propose LEFTNet which effectively implements these modules.
arXiv Detail & Related papers (2023-04-07T18:08:27Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - An Efficient End-to-End 3D Model Reconstruction based on Neural
Architecture Search [5.913946292597174]
We propose an efficient model reconstruction method utilizing neural architecture search (NAS) and binary classification.
Our method achieves significantly higher reconstruction accuracy using fewer network parameters.
arXiv Detail & Related papers (2022-02-27T08:53:43Z) - Laplacian2Mesh: Laplacian-Based Mesh Understanding [4.808061174740482]
We introduce a novel and flexible convolutional neural network (CNN) model, called Laplacian2Mesh, for 3D triangle mesh.
Mesh pooling is applied to expand the receptive field of the network by the multi-space transformation of Laplacian.
Experiments on various learning tasks applied to 3D meshes demonstrate the effectiveness and efficiency of Laplacian2Mesh.
arXiv Detail & Related papers (2022-02-01T10:10:13Z) - Mesh Convolution with Continuous Filters for 3D Surface Parsing [101.25796935464648]
We propose a series of modular operations for effective geometric feature learning from 3D triangle meshes.
Our mesh convolutions exploit spherical harmonics as orthonormal bases to create continuous convolutional filters.
We further contribute a novel hierarchical neural network for perceptual parsing of 3D surfaces, named PicassoNet++.
arXiv Detail & Related papers (2021-12-03T09:16:49Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
arXiv Detail & Related papers (2021-02-19T10:25:33Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - MeshWalker: Deep Mesh Understanding by Random Walks [19.594977587417247]
We look at the most popular representation of 3D shapes in computer graphics - a triangular mesh - and ask how it can be utilized within deep learning.
This paper proposes a very different approach, termed MeshWalker, to learn the shape directly from a given mesh.
We show that our approach achieves state-of-the-art results for two fundamental shape analysis tasks.
arXiv Detail & Related papers (2020-06-09T15:35:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.