When Model Knowledge meets Diffusion Model: Diffusion-assisted Data-free Image Synthesis with Alignment of Domain and Class
- URL: http://arxiv.org/abs/2506.15381v1
- Date: Wed, 18 Jun 2025 11:51:40 GMT
- Title: When Model Knowledge meets Diffusion Model: Diffusion-assisted Data-free Image Synthesis with Alignment of Domain and Class
- Authors: Yujin Kim, Hyunsoo Kim, Hyunwoo J. Kim, Suhyun Kim,
- Abstract summary: Open-source pre-trained models hold great potential for diverse applications, but their utility declines when their training data is unavailable.<n>Data-Free Image Synthesis (DFIS) aims to generate images that approximate the learned data distribution of a pre-trained model without accessing the original data.<n>DDIS is the first Diffusion-assisted Data-free Image Synthesis method that leverages a text-to-image diffusion model as a powerful image prior.
- Score: 18.81528537866941
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-source pre-trained models hold great potential for diverse applications, but their utility declines when their training data is unavailable. Data-Free Image Synthesis (DFIS) aims to generate images that approximate the learned data distribution of a pre-trained model without accessing the original data. However, existing DFIS meth ods produce samples that deviate from the training data distribution due to the lack of prior knowl edge about natural images. To overcome this limitation, we propose DDIS, the first Diffusion-assisted Data-free Image Synthesis method that leverages a text-to-image diffusion model as a powerful image prior, improving synthetic image quality. DDIS extracts knowledge about the learned distribution from the given model and uses it to guide the diffusion model, enabling the generation of images that accurately align with the training data distribution. To achieve this, we introduce Domain Alignment Guidance (DAG) that aligns the synthetic data domain with the training data domain during the diffusion sampling process. Furthermore, we optimize a single Class Alignment Token (CAT) embedding to effectively capture class-specific attributes in the training dataset. Experiments on PACS and Ima geNet demonstrate that DDIS outperforms prior DFIS methods by generating samples that better reflect the training data distribution, achieving SOTA performance in data-free applications.
Related papers
- Pruning then Reweighting: Towards Data-Efficient Training of Diffusion Models [33.09663675904689]
We investigate efficient diffusion training from the perspective of dataset pruning.
Inspired by the principles of data-efficient training for generative models such as generative adversarial networks (GANs), we first extend the data selection scheme used in GANs to DM training.
To further improve the generation performance, we employ a class-wise reweighting approach.
arXiv Detail & Related papers (2024-09-27T20:21:19Z) - Integrating Amortized Inference with Diffusion Models for Learning Clean Distribution from Corrupted Images [19.957503854446735]
Diffusion models (DMs) have emerged as powerful generative models for solving inverse problems.
FlowDiff is a joint training paradigm that leverages a conditional normalizing flow model to facilitate the training of diffusion models on corrupted data sources.
Our experiment shows that FlowDiff can effectively learn clean distributions across a wide range of corrupted data sources.
arXiv Detail & Related papers (2024-07-15T18:33:20Z) - DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
We propose a framework for synthesizing classification datasets that more faithfully represents the real data distribution.
DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model.
We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets.
arXiv Detail & Related papers (2024-07-15T17:10:31Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Source-Free Domain Adaptation with Diffusion-Guided Source Data Generation [6.087274577167399]
This paper introduces a novel approach to leverage the generalizability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA)
Our proposed DMSFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images.
We validate our approach through comprehensive experiments across a range of datasets, including Office-31, Office-Home, and VisDA.
arXiv Detail & Related papers (2024-02-07T14:56:13Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Unbiased Image Synthesis via Manifold Guidance in Diffusion Models [9.531220208352252]
Diffusion Models often inadvertently favor certain data attributes, undermining the diversity of generated images.
We propose a plug-and-play method named Manifold Sampling Guidance, which is also the first unsupervised method to mitigate bias issue in DDPMs.
arXiv Detail & Related papers (2023-07-17T02:03:17Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.