Beyond explaining: XAI-based Adaptive Learning with SHAP Clustering for
Energy Consumption Prediction
- URL: http://arxiv.org/abs/2402.04982v1
- Date: Wed, 7 Feb 2024 15:58:51 GMT
- Title: Beyond explaining: XAI-based Adaptive Learning with SHAP Clustering for
Energy Consumption Prediction
- Authors: Tobias Clement and Hung Truong Thanh Nguyen and Nils Kemmerzell and
Mohamed Abdelaal and Davor Stjelja
- Abstract summary: We introduce a three-stage process: obtaining SHAP values to explain model predictions, clustering SHAP values to identify distinct patterns and outliers, and refining the model based on the derived SHAP clustering characteristics.
Our experiments demonstrate the effectiveness of our approach in both task types, resulting in improved predictive performance and interpretable model explanations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an approach integrating explainable artificial
intelligence (XAI) techniques with adaptive learning to enhance energy
consumption prediction models, with a focus on handling data distribution
shifts. Leveraging SHAP clustering, our method provides interpretable
explanations for model predictions and uses these insights to adaptively refine
the model, balancing model complexity with predictive performance. We introduce
a three-stage process: (1) obtaining SHAP values to explain model predictions,
(2) clustering SHAP values to identify distinct patterns and outliers, and (3)
refining the model based on the derived SHAP clustering characteristics. Our
approach mitigates overfitting and ensures robustness in handling data
distribution shifts. We evaluate our method on a comprehensive dataset
comprising energy consumption records of buildings, as well as two additional
datasets to assess the transferability of our approach to other domains,
regression, and classification problems. Our experiments demonstrate the
effectiveness of our approach in both task types, resulting in improved
predictive performance and interpretable model explanations.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Composite Survival Analysis: Learning with Auxiliary Aggregated
Baselines and Survival Scores [0.0]
Survival Analysis (SA) constitutes the default method for time-to-event modeling.
We show how to improve the training and inference of SA models by decoupling their full expression into (1) an aggregated baseline hazard, which captures the overall behavior of a given population, and (2) independently distributed survival scores, which model idiosyncratic probabilistic dynamics of its given members, in a fully parametric setting.
arXiv Detail & Related papers (2023-12-10T11:13:22Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Better Modelling Out-of-Distribution Regression on Distributed Acoustic
Sensor Data Using Anchored Hidden State Mixup [0.7455546102930911]
Generalizing the application of machine learning models to situations where the statistical distribution of training and test data are different has been a complex problem.
We introduce an anchored-based Out of Distribution (OOD) Regression Mixup algorithm, leveraging manifold hidden state mixup and observation similarities to form a novel regularization penalty.
We demonstrate with an extensive evaluation the generalization performance of the proposed method against existing approaches, then show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-02-23T03:12:21Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Conceptually Diverse Base Model Selection for Meta-Learners in Concept
Drifting Data Streams [3.0938904602244355]
We present a novel approach for estimating the conceptual similarity of base models, which is calculated using the Principal Angles (PAs) between their underlying subspaces.
We evaluate these methods against thresholding using common ensemble pruning metrics, namely predictive performance and Mutual Information (MI) in the context of online Transfer Learning (TL)
Our results show that conceptual similarity thresholding has a reduced computational overhead, and yet yields comparable predictive performance to thresholding using predictive performance and MI.
arXiv Detail & Related papers (2021-11-29T13:18:53Z) - Inducing Semantic Grouping of Latent Concepts for Explanations: An
Ante-Hoc Approach [18.170504027784183]
We show that by exploiting latent and properly modifying different parts of the model can result better explanation as well as provide superior predictive performance.
We also proposed a technique of using two different self-supervision techniques to extract meaningful concepts related to the type of self-supervision considered.
arXiv Detail & Related papers (2021-08-25T07:09:57Z) - PSD2 Explainable AI Model for Credit Scoring [0.0]
The aim of this project is to develop and test advanced analytical methods to improve the prediction accuracy of Credit Risk Models.
The project focuses on applying an explainable machine learning model to bank-related databases.
arXiv Detail & Related papers (2020-11-20T12:12:38Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.