Zero-Shot Chain-of-Thought Reasoning Guided by Evolutionary Algorithms
in Large Language Models
- URL: http://arxiv.org/abs/2402.05376v1
- Date: Thu, 8 Feb 2024 03:17:38 GMT
- Title: Zero-Shot Chain-of-Thought Reasoning Guided by Evolutionary Algorithms
in Large Language Models
- Authors: Feihu Jin, Yifan Liu, Ying Tan
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks by applying zero-shot Chain-of-Thought (CoT) prompting.
Existing zero-shot CoT prompting methods that employ identical CoT prompting across all task instances may not be optimal.
We introduce a novel zero-shot prompting method that leverages evolutionary algorithms to generate diverse promptings for LLMs dynamically.
- Score: 11.967815199202203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable performance across
diverse tasks and exhibited impressive reasoning abilities by applying
zero-shot Chain-of-Thought (CoT) prompting. However, due to the evolving nature
of sentence prefixes during the pre-training phase, existing zero-shot CoT
prompting methods that employ identical CoT prompting across all task instances
may not be optimal. In this paper, we introduce a novel zero-shot prompting
method that leverages evolutionary algorithms to generate diverse promptings
for LLMs dynamically. Our approach involves initializing two CoT promptings,
performing evolutionary operations based on LLMs to create a varied set, and
utilizing the LLMs to select a suitable CoT prompting for a given problem.
Additionally, a rewriting operation, guided by the selected CoT prompting,
enhances the understanding of the LLMs about the problem. Extensive experiments
conducted across ten reasoning datasets demonstrate the superior performance of
our proposed method compared to current zero-shot CoT prompting methods on
GPT-3.5-turbo and GPT-4. Moreover, in-depth analytical experiments underscore
the adaptability and effectiveness of our method in various reasoning tasks.
Related papers
- Instance-adaptive Zero-shot Chain-of-Thought Prompting [32.700073951068575]
Zero-shot Chain-of-Thought (CoT) prompting emerges as a simple and effective strategy for enhancing the performance of large language models (LLMs) in real-world reasoning tasks.
This work introduces an instance-adaptive prompting algorithm as an alternative zero-shot CoT reasoning scheme by adaptively differentiating good and bad prompts.
arXiv Detail & Related papers (2024-09-30T16:00:34Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - DialCoT Meets PPO: Decomposing and Exploring Reasoning Paths in Smaller
Language Models [18.96271708412086]
Chain-of-Thought (CoT) prompting has proven to be effective in enhancing the reasoning capabilities of Large Language Models (LLMs) with at least 100 billion parameters.
We introduce Dialogue-guided Chain-of-Thought (DialCoT) which employs a dialogue format to generate intermediate reasoning steps, guiding the model toward the final answer.
arXiv Detail & Related papers (2023-10-08T08:52:13Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
Relation extraction (RE) consistently involves a certain degree of labeled or unlabeled data even if under zero-shot setting.
Recent studies have shown that large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt.
This work focuses on the study of exploring LLMs as zero-shot relation extractors.
arXiv Detail & Related papers (2023-10-08T06:17:39Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.