論文の概要: VoQA: Visual-only Question Answering
- arxiv url: http://arxiv.org/abs/2505.14227v1
- Date: Tue, 20 May 2025 11:37:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.13862
- Title: VoQA: Visual-only Question Answering
- Title(参考訳): VoQA: ビジュアルのみの質問回答
- Authors: Luyang Jiang, Jianing An, Jie Luo, Wenjun Wu, Lei Huang,
- Abstract要約: 本稿では,視覚のみの質問回答(VoQA)を提案する。
これは、視覚的に埋め込まれたテキストの質問を見つけ、認識し、推論するモデルを必要とする。
GRT-SFT(Guid Response Triggering Supervised Fine-tuning)は,視覚的入力に基づくステップバイステップ推論を行うための構造的微調整戦略である。
- 参考スコア(独自算出の注目度): 7.251596370310251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Visual-only Question Answering (VoQA), a novel multimodal task in which questions are visually embedded within images, without any accompanying textual input. This requires models to locate, recognize, and reason over visually embedded textual questions, posing challenges for existing large vision-language models (LVLMs), which show notable performance drops even with carefully designed prompts. To bridge this gap, we introduce Guided Response Triggering Supervised Fine-tuning (GRT-SFT), a structured fine-tuning strategy that guides the model to perform step-by-step reasoning purely based on visual input, significantly improving model performance. Our work enhances models' capacity for human-like visual understanding in complex multimodal scenarios, where information, including language, is perceived visually.
- Abstract(参考訳): 本稿では,視覚のみの質問回答(VoQA)を提案する。
既存の大規模視覚言語モデル(LVLM)では、注意深く設計されたプロンプトであっても、顕著なパフォーマンス低下を示す問題が発生している。
このギャップを埋めるために、我々はGRT-SFT(Guid Response Triggering Supervised Fine-tuning)を導入しました。
我々の研究は、言語を含む情報が視覚的に知覚される複雑なマルチモーダルシナリオにおいて、人間のような視覚的理解のためのモデルの能力を高める。
関連論文リスト
- Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant [48.220285886328746]
本稿では,SQ-LLaVA: Self-Questioning for Large Vision-Language Assistantを提案する。
SQ-LLaVAは、視覚的手がかりと先行言語知識を分析しながら、柔軟で有意義な画像関連質問を生成する能力を示す。
高品質なインストラクションデータに対する微調整SQ-LLaVAは、従来の視覚的インストラクションチューニング手法と比較して性能改善を示す。
論文 参考訳(メタデータ) (2024-03-17T18:42:38Z) - Improving In-Context Learning in Diffusion Models with Visual
Context-Modulated Prompts [83.03471704115786]
本研究では,改良型プロンプト拡散(iPromptDiff)を紹介する。
iPromptDiffは、視覚コンテキストを埋め込みベクトルに変換するエンドツーエンドのトレーニングされた視覚エンコーダを統合する。
拡散に基づく視覚基盤モデルにおいて,この視覚的文脈変調テキストガイダンスと標準制御ネット構造を組み込んだ場合,多種多様な学習課題における多目的性と堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2023-12-03T14:15:52Z) - Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding [55.65727739645824]
Chat-UniViは、画像やビデオを含む会話を解釈し、関与できる統一ビジョン言語モデルである。
画像やビデオを一様に表現するために、ダイナミックな視覚トークンのセットを使用します。
我々はマルチスケール表現を活用し、モデルが高レベルなセマンティック概念と低レベルな視覚的詳細の両方を知覚できるようにする。
論文 参考訳(メタデータ) (2023-11-14T10:11:36Z) - Look, Remember and Reason: Grounded reasoning in videos with language
models [5.3445140425713245]
マルチテンポラル言語モデル(LM)は、最近ビデオ上の高レベル推論タスクにおいて有望な性能を示した。
オブジェクト検出,再識別,追跡など,低レベルなサロゲートタスクに対するLMエンドツーエンドのトレーニングを提案し,低レベルな視覚能力を備えたモデルを実現する。
我々は、ACRE、CATER、Some-Else、STARデータセットからの多様な視覚的推論タスクにおけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-06-30T16:31:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。