Optimizing Delegation in Collaborative Human-AI Hybrid Teams
- URL: http://arxiv.org/abs/2402.05605v2
- Date: Sun, 25 Aug 2024 15:28:21 GMT
- Title: Optimizing Delegation in Collaborative Human-AI Hybrid Teams
- Authors: Andrew Fuchs, Andrea Passarella, Marco Conti,
- Abstract summary: We address the case of hybrid teams in which only one team member (the control agent) is authorized to act as control for the team.
We propose the addition of an AI manager which learns as an outside observer of the team.
We demonstrate our manager performance in a simulated driving scenario representing the case of a hybrid team of agents composed of a human driver and autonomous driving system.
- Score: 1.433758865948252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When humans and autonomous systems operate together as what we refer to as a hybrid team, we of course wish to ensure the team operates successfully and effectively. We refer to team members as agents. In our proposed framework, we address the case of hybrid teams in which, at any time, only one team member (the control agent) is authorized to act as control for the team. To determine the best selection of a control agent, we propose the addition of an AI manager (via Reinforcement Learning) which learns as an outside observer of the team. The manager learns a model of behavior linking observations of agent performance and the environment/world the team is operating in, and from these observations makes the most desirable selection of a control agent. We restrict the manager task by introducing a set of constraints. The manager constraints indicate acceptable team operation, so a violation occurs if the team enters a condition which is unacceptable and requires manager intervention. To ensure minimal added complexity or potential inefficiency for the team, the manager should attempt to minimize the number of times the team reaches a constraint violation and requires subsequent manager intervention. Therefore our manager is optimizing its selection of authorized agents to boost overall team performance while minimizing the frequency of manager intervention. We demonstrate our manager performance in a simulated driving scenario representing the case of a hybrid team of agents composed of a human driver and autonomous driving system. We perform experiments for our driving scenario with interfering vehicles, indicating the need for collision avoidance and proper speed control. Our results indicate a positive impact of our manager, with some cases resulting in increased team performance up to ~187% that of the best solo agent performance.
Related papers
- Optimizing Risk-averse Human-AI Hybrid Teams [1.433758865948252]
We propose a manager which learns, through a standard Reinforcement Learning scheme, how to best delegate.
We demonstrate the optimality of our manager's performance in several grid environments.
Our results show our manager can successfully learn desirable delegations which result in team paths near/exactly optimal.
arXiv Detail & Related papers (2024-03-13T09:49:26Z) - Optimizing delegation between human and AI collaborative agents [1.6114012813668932]
We train a delegating manager agent to make delegation decisions with respect to potential performance deficiencies.
Our framework learns through observations of team performance without restricting agents to matching dynamics.
Our results show our manager learns to perform delegation decisions with teams of agents operating under differing representations of the environment.
arXiv Detail & Related papers (2023-09-26T07:23:26Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Can Agents Run Relay Race with Strangers? Generalization of RL to
Out-of-Distribution Trajectories [88.08381083207449]
We show the prevalence of emphgeneralization failure on controllable states from stranger agents.
We propose a novel method called Self-Trajectory Augmentation (STA), which will reset the environment to the agent's old states according to the Q function during training.
arXiv Detail & Related papers (2023-04-26T10:12:12Z) - Compensating for Sensing Failures via Delegation in Human-AI Hybrid
Systems [0.0]
We consider the hybrid human-AI teaming case where a managing agent is tasked with identifying when to perform a delegation assignment.
We model how the environmental context can contribute to, or exacerbate, the sensing deficiencies.
We demonstrate how a Reinforcement Learning (RL) manager can correct the context-delegation association.
arXiv Detail & Related papers (2023-03-02T14:27:01Z) - Task Allocation with Load Management in Multi-Agent Teams [4.844411739015927]
We present a decision-making framework for multi-agent teams to learn task allocation with the consideration of load management.
We illustrate the effect of load management on team performance and explore agent behaviors in example scenarios.
A measure of agent importance in collaboration is developed to infer team resilience when facing potential overload situations.
arXiv Detail & Related papers (2022-07-17T20:17:09Z) - Learning to Transfer Role Assignment Across Team Sizes [48.43860606706273]
We propose a framework to learn role assignment and transfer across team sizes.
We demonstrate that re-using the role-based credit assignment structure can foster the learning process of larger reinforcement learning teams.
arXiv Detail & Related papers (2022-04-17T11:22:01Z) - Coach-assisted Multi-Agent Reinforcement Learning Framework for
Unexpected Crashed Agents [120.91291581594773]
We present a formal formulation of a cooperative multi-agent reinforcement learning system with unexpected crashes.
We propose a coach-assisted multi-agent reinforcement learning framework, which introduces a virtual coach agent to adjust the crash rate during training.
To the best of our knowledge, this work is the first to study the unexpected crashes in the multi-agent system.
arXiv Detail & Related papers (2022-03-16T08:22:45Z) - Coach-Player Multi-Agent Reinforcement Learning for Dynamic Team
Composition [88.26752130107259]
In real-world multiagent systems, agents with different capabilities may join or leave without altering the team's overarching goals.
We propose COPA, a coach-player framework to tackle this problem.
We 1) adopt the attention mechanism for both the coach and the players; 2) propose a variational objective to regularize learning; and 3) design an adaptive communication method to let the coach decide when to communicate with the players.
arXiv Detail & Related papers (2021-05-18T17:27:37Z) - Moody Learners -- Explaining Competitive Behaviour of Reinforcement
Learning Agents [65.2200847818153]
In a competitive scenario, the agent does not only have a dynamic environment but also is directly affected by the opponents' actions.
Observing the Q-values of the agent is usually a way of explaining its behavior, however, do not show the temporal-relation between the selected actions.
arXiv Detail & Related papers (2020-07-30T11:30:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.