Preventing Rogue Agents Improves Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2502.05986v2
- Date: Mon, 21 Jul 2025 13:51:31 GMT
- Title: Preventing Rogue Agents Improves Multi-Agent Collaboration
- Authors: Ohav Barbi, Ori Yoran, Mor Geva,
- Abstract summary: We propose to monitor agents during action prediction and intervene when a future error is likely to occur.<n>Experiments on WhoDunitEnv, code generation tasks and the GovSim environment for resource sustainability show that our approach leads to substantial performance gains.
- Score: 21.955058255432974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent systems, where specialized agents collaborate to solve a shared task hold great potential, from increased modularity to simulating complex environments. However, they also have a major caveat -- a single agent can cause the entire system to fail. Consider a simple game where the knowledge to solve the task is distributed between agents, which share information in a communication channel. At each round, any of the agents can terminate the game and make the final prediction, even if they are uncertain about the outcome of their action. Detection of such rogue agents before they act may prevent the system's failure. In this work, we propose to monitor agents during action prediction and intervene when a future error is likely to occur. To test our approach, we introduce WhoDunitEnv, a multi-agent collaboration environment that allows modular control over task complexity and communication structure. Experiments on WhoDunitEnv, code generation tasks and the GovSim environment for resource sustainability show that our approach leads to substantial performance gains up to 17.4%, 2.5% and 20%, respectively. Thorough analysis shows that our monitors successfully identify critical points of agent confusion and our interventions effectively stop agent errors from propagating.
Related papers
- When Agents Break Down in Multiagent Path Finding [0.0]
We introduce a new variant that formally models scenarios where some agents may experience delays due to malfunctions.<n>We propose a framework for dynamic schedule adaptation that does not rely on full replanning.<n>We prove that following our primary communication protocol, the increase in makespan after k malfunctions is bounded by k additional turns.
arXiv Detail & Related papers (2025-08-05T12:59:30Z) - CP-uniGuard: A Unified, Probability-Agnostic, and Adaptive Framework for Malicious Agent Detection and Defense in Multi-Agent Embodied Perception Systems [21.478631468402977]
Collaborative Perception (CP) has been shown to be a promising technique for multi-agent autonomous driving and multi-agent robotic systems.<n>In CP, an ego agent needs to receive messages from its collaborators, which makes it vulnerable to attacks from malicious agents.<n>We propose a unified, probability-agnostic, and adaptive framework, namely, CP-uniGuard, to accurately detect and eliminate malicious agents in its collaboration network.
arXiv Detail & Related papers (2025-06-28T14:02:14Z) - PeerGuard: Defending Multi-Agent Systems Against Backdoor Attacks Through Mutual Reasoning [8.191214701984162]
Multi-agent systems leverage advanced AI models as autonomous agents that interact, cooperate, or compete to complete complex tasks.<n>Despite their growing importance, safety in multi-agent systems remains largely underexplored.<n>This work investigates backdoor vulnerabilities in multi-agent systems and proposes a defense mechanism based on agent interactions.
arXiv Detail & Related papers (2025-05-16T19:08:29Z) - Multi-Agent Stochastic Bandits Robust to Adversarial Corruptions [6.234292942334148]
We propose a multi-agent cooperative learning algorithm that is robust to adversarial corruptions.
As a side-product, our algorithm also improves the state-of-the-art regret bounds when reducing to both the single-agent and homogeneous multi-agent scenarios.
arXiv Detail & Related papers (2024-11-12T20:20:26Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents [58.79302663733703]
Large language model-based multi-agent systems have shown great abilities across various tasks due to the collaboration of expert agents.<n>However, the impact of clumsy or even malicious agents, on the overall performance of the system remains underexplored.<n>This paper investigates what is the resilience of various system structures under faulty agents.
arXiv Detail & Related papers (2024-08-02T03:25:20Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.<n>We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.<n>We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - Malicious Agent Detection for Robust Multi-Agent Collaborative Perception [52.261231738242266]
Multi-agent collaborative (MAC) perception is more vulnerable to adversarial attacks than single-agent perception.
We propose Malicious Agent Detection (MADE), a reactive defense specific to MAC perception.
We conduct comprehensive evaluations on a benchmark 3D dataset V2X-sim and a real-road dataset DAIR-V2X.
arXiv Detail & Related papers (2023-10-18T11:36:42Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Decentralized scheduling through an adaptive, trading-based multi-agent
system [1.7403133838762448]
In multi-agent reinforcement learning systems, the actions of one agent can have a negative impact on the rewards of other agents.
This work applies a trading approach to a simulated scheduling environment, where the agents are responsible for the assignment of incoming jobs to compute cores.
The agents can trade the usage right of computational cores to process high-priority, high-reward jobs faster than low-priority, low-reward jobs.
arXiv Detail & Related papers (2022-07-05T13:50:18Z) - Multi-Agent Neural Rewriter for Vehicle Routing with Limited Disclosure
of Costs [65.23158435596518]
Solving the multi-vehicle routing problem as a team Markov game with partially observable costs.
Our multi-agent reinforcement learning approach, the so-called multi-agent Neural Rewriter, builds on the single-agent Neural Rewriter to solve the problem by iteratively rewriting solutions.
arXiv Detail & Related papers (2022-06-13T09:17:40Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
We study the setting proposed in V2VNet, where nearby self-driving vehicles jointly perform object detection and motion forecasting in a cooperative manner.
We propose a novel neural reasoning framework that learns to communicate, to estimate potential errors, and to reach a consensus about those errors.
arXiv Detail & Related papers (2020-11-10T18:19:40Z) - BGC: Multi-Agent Group Belief with Graph Clustering [1.9949730506194252]
We propose a semi-communication method to enable agents can exchange information without communication.
Inspired by the neighborhood cognitive consistency, we propose a group-based module to divide adjacent agents into a small group and minimize in-group agents' beliefs.
Results reveal that the proposed method achieves a significant improvement in the SMAC benchmark.
arXiv Detail & Related papers (2020-08-20T07:07:20Z) - Ubiquitous Distributed Deep Reinforcement Learning at the Edge:
Analyzing Byzantine Agents in Discrete Action Spaces [0.06554326244334865]
This paper discusses some of the challenges in multi-agent distributed deep reinforcement learning that can occur in the presence of byzantine or malfunctioning agents.
We show how wrong discrete actions can significantly affect the collaborative learning effort.
Experiments are carried out in a simulation environment using the Atari testbed for the discrete action spaces, and advantage actor-critic (A2C) for the distributed multi-agent training.
arXiv Detail & Related papers (2020-08-18T11:25:39Z) - Robust Multi-Agent Multi-Armed Bandits [26.26185074977412]
Recent works have shown that agents facing independent instances of a $K$-armed bandit can collaborate to decrease regret.
We show that collaboration indeed decreases regret for this algorithm, assuming $m$ is small compared to $K$ but without assumptions on malicious agents' behavior.
arXiv Detail & Related papers (2020-07-07T22:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.