OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning
- URL: http://arxiv.org/abs/2311.09724v2
- Date: Mon, 1 Apr 2024 13:50:51 GMT
- Title: OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning
- Authors: Fei Yu, Anningzhe Gao, Benyou Wang,
- Abstract summary: We argue that in guided decoding, assessing the potential of an incomplete reasoning path can be more advantageous than simply ensuring per-step correctness.
Inspired by the findings that $textitoutcome supervision for guided decoding essentially acts as a value model, we propose Outcome-supervised Value Model (OVM)
Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model.
- Score: 15.59540726867483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) often struggle with maintaining accuracy throughout multiple multiple reasoning steps, especially in mathematical reasoning where an error in earlier steps can propagate to subsequent ones and it ultimately leading to an incorrect answer. To reduce error propagation, guided decoding is employed to direct the LM decoding on a step-by-step basis. We argue that in guided decoding, assessing the potential of an incomplete reasoning path can be more advantageous than simply ensuring per-step correctness, as the former approach leads towards a correct final answer. This transforms the task into a $\textit{value estimation}$ problem in planning. Inspired by the findings that $\textit{outcome supervision for guided decoding essentially acts as a value model}$, we propose Outcome-supervised Value Model (OVM) that employs outcome supervision for training a value model, which prioritizes steps that lead to accurate conclusions. Furthermore, the OVM eliminates the need for labor-intensive annotations of step-level correctness, thereby significantly enhancing its scalability. Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model. Notably, in GSM8K, our $\textbf{OVM-7B model achieves state-of-the-art results among LLMs up to 13B parameters}$; especially it does not utilize GPT-4 or code execution. These findings offer a novel perspective on the role of outcome supervision in training value models for multi-step reasoning tasks and provide theoretical justification for its advantage in value estimation for guided decoding.
Related papers
- Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs)
This work introduces a novel approach based on computational models of metareasoning used in cognitive science.
We develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning.
arXiv Detail & Related papers (2024-10-07T23:48:52Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Improve Mathematical Reasoning in Language Models by Automated Process Supervision [22.72856086318912]
We propose a novel Monte Carlo Tree Search (MCTS) algorithm named textitOmegaPRM for the efficient collection of high-quality process supervision data.
We are able to collect over 1.5 million process supervision annotations to train a Process Reward Model (PRM)
We have enhanced the instruction tuned Gemini Pro model's math reasoning performance, achieving a 69.4% success rate on the MATH benchmark.
arXiv Detail & Related papers (2024-06-05T19:25:40Z) - Evaluating Mathematical Reasoning Beyond Accuracy [50.09931172314218]
We introduce ReasonEval, a new methodology for evaluating the quality of reasoning steps.
We show that ReasonEval achieves state-of-the-art performance on human-labeled datasets.
We observe that ReasonEval can play a significant role in data selection.
arXiv Detail & Related papers (2024-04-08T17:18:04Z) - Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning [54.585428241509234]
We propose R$3$: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL)
RL employs only outcome supervision to achieve the benefits of process supervision for large language models.
arXiv Detail & Related papers (2024-02-08T16:46:26Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z) - Value Gradient weighted Model-Based Reinforcement Learning [28.366157882991565]
Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies.
VaGraM is a novel method for value-aware model learning.
arXiv Detail & Related papers (2022-04-04T13:28:31Z) - An Information Bottleneck Approach for Controlling Conciseness in
Rationale Extraction [84.49035467829819]
We show that it is possible to better manage this trade-off by optimizing a bound on the Information Bottleneck (IB) objective.
Our fully unsupervised approach jointly learns an explainer that predicts sparse binary masks over sentences, and an end-task predictor that considers only the extracted rationale.
arXiv Detail & Related papers (2020-05-01T23:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.