An explainable machine learning-based approach for analyzing customers'
online data to identify the importance of product attributes
- URL: http://arxiv.org/abs/2402.05949v1
- Date: Sat, 3 Feb 2024 20:50:48 GMT
- Title: An explainable machine learning-based approach for analyzing customers'
online data to identify the importance of product attributes
- Authors: Aigin Karimzadeh, Amir Zakery, Mohammadreza Mohammadi, Ali Yavari
- Abstract summary: We propose a game theory machine learning (ML) method that extracts comprehensive design implications for product development.
We apply our method to a real-world dataset of laptops from Kaggle, and derive design implications based on the results.
- Score: 0.6437284704257459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online customer data provides valuable information for product design and
marketing research, as it can reveal the preferences of customers. However,
analyzing these data using artificial intelligence (AI) for data-driven design
is a challenging task due to potential concealed patterns. Moreover, in these
research areas, most studies are only limited to finding customers' needs. In
this study, we propose a game theory machine learning (ML) method that extracts
comprehensive design implications for product development. The method first
uses a genetic algorithm to select, rank, and combine product features that can
maximize customer satisfaction based on online ratings. Then, we use SHAP
(SHapley Additive exPlanations), a game theory method that assigns a value to
each feature based on its contribution to the prediction, to provide a
guideline for assessing the importance of each feature for the total
satisfaction. We apply our method to a real-world dataset of laptops from
Kaggle, and derive design implications based on the results. Our approach
tackles a major challenge in the field of multi-criteria decision making and
can help product designers and marketers, to understand customer preferences
better with less data and effort. The proposed method outperforms benchmark
methods in terms of relevant performance metrics.
Related papers
- From Data to Decisions: The Transformational Power of Machine Learning
in Business Recommendations [0.0]
This research aims to explore the impact of Machine Learning (ML) on the evolution and efficacy of Recommendation Systems (RS)
The research identifies the increasing expectation of users for a seamless, intuitive online experience, where content is personalized and dynamically adapted to changing preferences.
arXiv Detail & Related papers (2024-02-12T22:56:18Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - GPT in Data Science: A Practical Exploration of Model Selection [0.7646713951724013]
This research is committed to advancing our comprehension of AI decision-making processes.
Our efforts are directed towards creating AI systems that are more transparent and comprehensible.
arXiv Detail & Related papers (2023-11-20T03:42:24Z) - Making Machine Learning Datasets and Models FAIR for HPC: A Methodology
and Case Study [0.0]
The FAIR Guiding Principles aim to improve the findability, accessibility, interoperability, and reusability of digital content by making them both human and machine actionable.
These principles have not yet been broadly adopted in the domain of machine learning-based program analyses and optimizations for High-Performance Computing.
We design a methodology to make HPC datasets and machine learning models FAIR after investigating existing FAIRness assessment and improvement techniques.
arXiv Detail & Related papers (2022-11-03T18:45:46Z) - Efficient Real-world Testing of Causal Decision Making via Bayesian
Experimental Design for Contextual Optimisation [12.37745209793872]
We introduce a model-agnostic framework for gathering data to evaluate and improve contextual decision making.
Our method is used for the data-efficient evaluation of the regret of past treatment assignments.
arXiv Detail & Related papers (2022-07-12T01:20:11Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z) - Interpretable Personalization via Policy Learning with Linear Decision
Boundaries [14.817218449140338]
effective personalization of goods and services has become a core business for companies to improve revenues and maintain a competitive edge.
This paper studies the personalization problem through the lens of policy learning.
We propose a class of policies with linear decision boundaries and propose learning algorithms using tools from causal inference.
arXiv Detail & Related papers (2020-03-17T05:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.