論文の概要: Nature-Inspired Local Propagation
- arxiv url: http://arxiv.org/abs/2402.05959v1
- Date: Sun, 4 Feb 2024 21:43:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-18 14:21:19.614450
- Title: Nature-Inspired Local Propagation
- Title(参考訳): 自然に触発された地域伝播
- Authors: Alessandro Betti, Marco Gori
- Abstract要約: 自然学習プロセスは、データの表現と学習が局所性を尊重するような方法で交わされるメカニズムに依存している。
ハミルトン方程式の構造を導出した「学習の法則」のアルゴリズム的解釈は、伝播の速度が無限大になるときにバックプロパゲーションに還元されることを示す。
これにより、バックプロパゲーションと提案されたローカルアルゴリズムの置き換えに基づく完全なオンライン情報に基づく機械学習への扉が開く。
- 参考スコア(独自算出の注目度): 68.63385571967267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spectacular results achieved in machine learning, including the recent
advances in generative AI, rely on large data collections. On the opposite,
intelligent processes in nature arises without the need for such collections,
but simply by online processing of the environmental information. In
particular, natural learning processes rely on mechanisms where data
representation and learning are intertwined in such a way to respect
spatiotemporal locality. This paper shows that such a feature arises from a
pre-algorithmic view of learning that is inspired by related studies in
Theoretical Physics. We show that the algorithmic interpretation of the derived
"laws of learning", which takes the structure of Hamiltonian equations, reduces
to Backpropagation when the speed of propagation goes to infinity. This opens
the doors to machine learning studies based on full on-line information
processing that are based the replacement of Backpropagation with the proposed
spatiotemporal local algorithm.
- Abstract(参考訳): 最近のジェネレーティブAIの進歩を含む機械学習における素晴らしい成果は、大規模なデータ収集に依存している。
逆に、自然界におけるインテリジェントなプロセスは、そのようなコレクションを必要とせず、単に環境情報のオンライン処理によって生じる。
特に、自然学習プロセスは、時空間的局所性を尊重する方法でデータ表現と学習が相互に絡み合うメカニズムに依存している。
本稿では,理論物理学の関連研究に触発された学習のアルゴリズム的前観から,このような特徴が生じることを示す。
ハミルトン方程式の構造を導出した「学習の法則」のアルゴリズム的解釈は、伝播の速度が無限大になるときにバックプロパゲーションに還元されることを示す。
これにより、バックプロパゲーションと提案した時空間局所アルゴリズムの置き換えに基づくオンライン情報処理に基づく機械学習研究への扉を開く。
関連論文リスト
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron [3.069335774032178]
学習を記述するフロー方程式を導出するために,データセット処理アプローチを用いる。
学習ルール(教師付きまたは強化学習,SL/RL)と入力データ分布が知覚者の学習曲線に及ぼす影響を特徴付ける。
このアプローチは、より複雑な回路アーキテクチャの学習力学を解析する方法を示している。
論文 参考訳(メタデータ) (2024-09-05T17:58:28Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
この論文の目的は、連想記憶モデルと生成モデルの両方において、アンラーニングの有効性を理解することである。
構造化データの選択により、連想記憶モデルは、相当量のアトラクションを持つニューラルダイナミクスのアトラクションとしての概念を検索することができる。
Boltzmann Machinesの新しい正規化手法が提案され、データセットから隠れ確率分布を学習する以前に開発された手法より優れていることが証明された。
論文 参考訳(メタデータ) (2024-03-04T23:12:42Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
本研究では,ホメオモルフィズムがマルウェアのトラフィックデータセットの学習表現に与える影響について検討する。
この結果から,学習された表現の詳細と,すべてのパラメータの多様体上で定義された特定の座標系は,関数近似とは全く異なることが示唆された。
論文 参考訳(メタデータ) (2020-09-16T15:37:44Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。