Blockchain-enabled Clustered and Scalable Federated Learning (BCS-FL)
Framework in UAV Networks
- URL: http://arxiv.org/abs/2402.05973v2
- Date: Thu, 15 Feb 2024 23:42:40 GMT
- Title: Blockchain-enabled Clustered and Scalable Federated Learning (BCS-FL)
Framework in UAV Networks
- Authors: Sana Hafeez, Lina Mohjazi, Muhammad Ali Imran and Yao Sun
- Abstract summary: This paper presents the Clustered and Scalable Federated Learning (BCS-FL) framework for UAV networks.
It improves the decentralization, coordination, scalability, and efficiency of FL in large-scale UAV networks.
- Score: 8.278150104847183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy, scalability, and reliability are significant challenges in unmanned
aerial vehicle (UAV) networks as distributed systems, especially when employing
machine learning (ML) technologies with substantial data exchange. Recently,
the application of federated learning (FL) to UAV networks has improved
collaboration, privacy, resilience, and adaptability, making it a promising
framework for UAV applications. However, implementing FL for UAV networks
introduces drawbacks such as communication overhead, synchronization issues,
scalability limitations, and resource constraints. To address these challenges,
this paper presents the Blockchain-enabled Clustered and Scalable Federated
Learning (BCS-FL) framework for UAV networks. This improves the
decentralization, coordination, scalability, and efficiency of FL in
large-scale UAV networks. The framework partitions UAV networks into separate
clusters, coordinated by cluster head UAVs (CHs), to establish a connected
graph. Clustering enables efficient coordination of updates to the ML model.
Additionally, hybrid inter-cluster and intra-cluster model aggregation schemes
generate the global model after each training round, improving collaboration
and knowledge sharing among clusters. The numerical findings illustrate the
achievement of convergence while also emphasizing the trade-offs between the
effectiveness of training and communication efficiency.
Related papers
- SCALE: Self-regulated Clustered federAted LEarning in a Homogeneous Environment [4.925906256430176]
Federated Learning (FL) has emerged as a transformative approach for enabling distributed machine learning while preserving user privacy.
This paper presents a novel FL methodology that overcomes these limitations by eliminating the dependency on edge servers.
arXiv Detail & Related papers (2024-07-25T20:42:16Z) - Efficient Cluster Selection for Personalized Federated Learning: A
Multi-Armed Bandit Approach [2.5477011559292175]
Federated learning (FL) offers a decentralized training approach for machine learning models, prioritizing data privacy.
In this paper, we introduce a dynamic Upper Confidence Bound (dUCB) algorithm inspired by the multi-armed bandit (MAB) approach.
arXiv Detail & Related papers (2023-10-29T16:46:50Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - UAV-Aided Decentralized Learning over Mesh Networks [23.612400109629544]
Decentralized learning empowers wireless network devices to collaboratively train a machine learning (ML) model relying solely on device-to-device (D2D) communication.
Local connectivity of real world mesh networks, due to the limited communication range of its wireless nodes, undermines the efficiency of decentralized learning protocols.
We propose an optimized UAV trajectory, that is defined as a sequence of waypoints that the UAV visits sequentially in order to transfer intelligence across sparsely connected group of users.
arXiv Detail & Related papers (2022-03-02T10:39:40Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - UAV-assisted Online Machine Learning over Multi-Tiered Networks: A
Hierarchical Nested Personalized Federated Learning Approach [25.936914508952086]
We consider distributed machine learning (ML) through unmanned aerial vehicles (UAVs) for geo-distributed device clusters.
We propose five new technologies/techniques: (i) stratified UAV swarms with leader, worker, and coordinator UAVs, (ii) hierarchical nested personalized federated learning (HN-PFL), and (iii) cooperative UAV resource pooling for distributed ML using the UAVs' local computational capabilities.
arXiv Detail & Related papers (2021-06-29T21:40:28Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications.
It is impractical to send raw data of devices to UAV servers for model training.
In this paper, we develop an asynchronous federated learning framework for multi-UAV-enabled networks.
arXiv Detail & Related papers (2020-11-28T18:58:34Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.