論文の概要: Decoupled Sequence and Structure Generation for Realistic Antibody Design
- arxiv url: http://arxiv.org/abs/2402.05982v3
- Date: Fri, 17 Jan 2025 02:28:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:57:12.781259
- Title: Decoupled Sequence and Structure Generation for Realistic Antibody Design
- Title(参考訳): リアルな抗体設計のためのデカップリング配列と構造生成
- Authors: Nayoung Kim, Minsu Kim, Sungsoo Ahn, Jinkyoo Park,
- Abstract要約: 主要なパラダイムは、モデルに抗体配列と構造を候補として共同で生成するように訓練することである。
本稿では, 配列生成と構造予測を分離した抗体配列構造デカップリング(ASSD)フレームワークを提案する。
ASSDは様々な抗体設計実験で性能が向上し、合成に基づく目的は非自己回帰モデルのトークン反復を軽減した。
- 参考スコア(独自算出の注目度): 45.72237864940556
- License:
- Abstract: Recently, deep learning has made rapid progress in antibody design, which plays a key role in the advancement of therapeutics. A dominant paradigm is to train a model to jointly generate the antibody sequence and the structure as a candidate. However, the joint generation requires the model to generate both the discrete amino acid categories and the continuous 3D coordinates; this limits the space of possible architectures and may lead to suboptimal performance. In response, we propose an antibody sequence-structure decoupling (ASSD) framework, which separates sequence generation and structure prediction. Although our approach is simple, our idea allows the use of powerful neural architectures and demonstrates notable performance improvements. We also find that the widely used non-autoregressive generators promote sequences with overly repeating tokens. Such sequences are both out-of-distribution and prone to undesirable developability properties that can trigger harmful immune responses in patients. To resolve this, we introduce a composition-based objective that allows an efficient trade-off between high performance and low token repetition. ASSD shows improved performance in various antibody design experiments, while the composition-based objective successfully mitigates token repetition of non-autoregressive models.
- Abstract(参考訳): 近年, 深層学習は抗体設計において急速に進歩し, 治療の進歩に重要な役割を担っている。
主要なパラダイムは、モデルに抗体配列と構造を候補として共同で生成するように訓練することである。
しかし、結合生成は、離散アミノ酸圏と連続した3次元座標の両方を生成するモデルを必要とする。
そこで本研究では, 配列生成と構造予測を分離したASSDフレームワークを提案する。
このアプローチは単純ですが、私たちのアイデアは強力なニューラルアーキテクチャの使用を可能にし、注目すべきパフォーマンス向上を実証しています。
また、広く使われている非自己回帰生成器は、過度に繰り返されるトークンを含むシーケンスを促進する。
このような配列は、アウト・オブ・ディストリビューションであり、患者に有害な免疫反応を引き起こす、望ましくない発達性の性質をもたらす。
これを解決するために,高パフォーマンスと低トークン繰り返しのトレードオフを効果的に行う,合成に基づく目的を導入する。
ASSDは様々な抗体設計実験で性能が向上し、合成に基づく目的は非自己回帰モデルのトークン反復を軽減した。
関連論文リスト
- Inverse folding for antibody sequence design using deep learning [2.8998926117101367]
本稿では, 抗体構造に特異的に最適化した, 精密な折り畳み逆モデルを提案する。
本研究では、相補性決定領域の標準的コンフォーメーションについて検討し、これらのループの既知のクラスタへの符号化を改善した。
論文 参考訳(メタデータ) (2023-10-30T13:12:41Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
抗体配列構造共設計のための階層的訓練パラダイム(HTP)を提案する。
HTPは4段階の訓練段階から構成され、それぞれが特定のタンパク質のモダリティに対応する。
実証実験により、HTPは共同設計問題において新しい最先端性能を設定できることが示されている。
論文 参考訳(メタデータ) (2023-10-30T02:39:15Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
抗体の特異性は、その相補性決定領域(CDR)によって決定される
従来の研究では、複雑な技術を使ってCDRを生成するが、不適切な幾何学的モデリングに悩まされている。
本稿では,CDRの1次元配列と3次元構造を1ショットで共設計できるテクスタイスシンプルで効果的なモデルを提案する。
論文 参考訳(メタデータ) (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
我々は、抗体配列から抗体構造を予測するために、xTrimoABFoldという新しいモデルを開発した。
CDRにおけるドメイン特異的焦点損失のアンサンブル損失とフレーム整合点損失を最小化することにより,PDBの抗体構造をエンドツーエンドにトレーニングした。
論文 参考訳(メタデータ) (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
深層学習に基づく計算抗体の設計は、人間の経験を補完する可能性のあるデータから自動的に抗体パターンをマイニングするので、注目を集めている。
計算手法は高品質な抗体構造データに大きく依存しており、非常に限定的である。
幸いなことに、CDRをモデル化し、構造データへの依存を軽減するために有効な抗体の配列データが多数存在する。
論文 参考訳(メタデータ) (2022-10-26T15:31:36Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
抗体の計算設計には、構造的一貫性を維持しながら、新規で多様な配列を生成することが含まれる。
近年のディープラーニングモデルでは優れた結果が得られたが、既知の抗体配列/構造対の数が限られているため、性能が劣化することが多い。
これは、ソース言語でトレーニング済みのモデルを再利用して、異なる言語で、データが少ないタスクに適応するものです。
論文 参考訳(メタデータ) (2022-10-05T20:44:55Z) - Benchmarking deep generative models for diverse antibody sequence design [18.515971640245997]
シーケンスのみから、あるいはシーケンスと構造を共同で学習する深層生成モデルは、このタスクにおいて印象的なパフォーマンスを示している。
最近提案されたタンパク質設計のための3つの深い生成フレームワークについて考察する: (AR) 配列ベースの自己回帰生成モデル、(GVP) 正確な構造ベースのグラフニューラルネットワーク、そして3次元折り畳みのファジィでスケールフリーな表現を利用するFold2Seq。
我々は,これらのモデルを,機能的含意に高い多様性を持つ設計配列を必要とする抗体配列の計算設計のタスクに基づいてベンチマークする。
論文 参考訳(メタデータ) (2021-11-12T16:23:32Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
そこで本研究では,結合特異性や中和機能を増強した抗体を自動設計する生成モデルを提案する。
本手法は,SARS-CoV-2ウイルスを中和可能な抗体の設計において,テストセット上で優れたログライクレーションを実現し,過去のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-10-09T18:23:32Z) - Self-Reflective Variational Autoencoder [21.054722609128525]
変分オートエンコーダ(VAE)は潜在変数生成モデルを学習するための強力なフレームワークである。
自己回帰推論(self-reflective inference)と呼ばれるソリューションを導入します。
実験では, 後部と後部を正確に一致させることの明確な利点を実証的に示す。
論文 参考訳(メタデータ) (2020-07-10T05:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。