Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage?
- URL: http://arxiv.org/abs/2402.06160v3
- Date: Thu, 31 Oct 2024 14:03:26 GMT
- Title: Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage?
- Authors: Maohao Shen, J. Jon Ryu, Soumya Ghosh, Yuheng Bu, Prasanna Sattigeri, Subhro Das, Gregory W. Wornell,
- Abstract summary: EDL methods are trained to learn a meta distribution over the predictive distribution by minimizing a specific objective function.
Recent studies identify limitations of the existing methods to conclude their learned uncertainties are unreliable.
We provide a sharper understanding of the behavior of a wide class of EDL methods by unifying various objective functions.
We conclude that even when EDL methods are empirically effective on downstream tasks, this occurs despite their poor uncertainty quantification capabilities.
- Score: 35.15844215216846
- License:
- Abstract: This paper questions the effectiveness of a modern predictive uncertainty quantification approach, called \emph{evidential deep learning} (EDL), in which a single neural network model is trained to learn a meta distribution over the predictive distribution by minimizing a specific objective function. Despite their perceived strong empirical performance on downstream tasks, a line of recent studies by Bengs et al. identify limitations of the existing methods to conclude their learned epistemic uncertainties are unreliable, e.g., in that they are non-vanishing even with infinite data. Building on and sharpening such analysis, we 1) provide a sharper understanding of the asymptotic behavior of a wide class of EDL methods by unifying various objective functions; 2) reveal that the EDL methods can be better interpreted as an out-of-distribution detection algorithm based on energy-based-models; and 3) conduct extensive ablation studies to better assess their empirical effectiveness with real-world datasets. Through all these analyses, we conclude that even when EDL methods are empirically effective on downstream tasks, this occurs despite their poor uncertainty quantification capabilities. Our investigation suggests that incorporating model uncertainty can help EDL methods faithfully quantify uncertainties and further improve performance on representative downstream tasks, albeit at the cost of additional computational complexity.
Related papers
- A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice [7.687545159131024]
We clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions.
We categorize various classes of uncertainty estimation methods derived from approaches.
We also explore techniques for uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification.
arXiv Detail & Related papers (2024-10-20T07:55:44Z) - Uncertainty Estimation by Density Aware Evidential Deep Learning [7.328039160501826]
Evidential deep learning (EDL) has shown remarkable success in uncertainty estimation.
We propose a novel method called Density Aware Evidential Deep Learning (DAEDL)
DAEDL integrates the feature space density of the testing example with the output of EDL during the prediction stage.
It demonstrates state-of-the-art performance across diverse downstream tasks related to uncertainty estimation and classification.
arXiv Detail & Related papers (2024-09-13T12:04:45Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL) provides reliable uncertainty estimation with minimal additional computation in a single forward pass.
We first delve into the theoretical foundation of EDL, the subjective logic theory, and discuss its distinctions from other uncertainty estimation frameworks.
We elaborate on its extensive applications across various machine learning paradigms and downstream tasks.
arXiv Detail & Related papers (2024-09-07T05:55:06Z) - Navigating Uncertainties in Machine Learning for Structural Dynamics: A Comprehensive Review of Probabilistic and Non-Probabilistic Approaches in Forward and Inverse Problems [0.0]
This paper presents a comprehensive review on navigating uncertainties in machine learning (ML)
It lists uncertainty-aware approaches into probabilistic methods and non-probabilistic methods.
The review aims to assist researchers and practitioners in making informed decisions when utilizing ML techniques to address uncertainties in structural dynamic problems.
arXiv Detail & Related papers (2024-08-16T09:43:01Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models [21.929902181609936]
We propose a novel approach to integrate uncertainty-based active learning and LoRA.
For the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model.
For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident.
arXiv Detail & Related papers (2024-03-02T10:38:10Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.