Navigating Uncertainties in Machine Learning for Structural Dynamics: A Comprehensive Review of Probabilistic and Non-Probabilistic Approaches in Forward and Inverse Problems
- URL: http://arxiv.org/abs/2408.08629v1
- Date: Fri, 16 Aug 2024 09:43:01 GMT
- Title: Navigating Uncertainties in Machine Learning for Structural Dynamics: A Comprehensive Review of Probabilistic and Non-Probabilistic Approaches in Forward and Inverse Problems
- Authors: Wang-Ji Yan, Lin-Feng Mei, Jiang Mo, Costas Papadimitriou, Ka-Veng Yuen, Michael Beer,
- Abstract summary: This paper presents a comprehensive review on navigating uncertainties in machine learning (ML)
It lists uncertainty-aware approaches into probabilistic methods and non-probabilistic methods.
The review aims to assist researchers and practitioners in making informed decisions when utilizing ML techniques to address uncertainties in structural dynamic problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of big data, machine learning (ML) has become a powerful tool in various fields, notably impacting structural dynamics. ML algorithms offer advantages by modeling physical phenomena based on data, even in the absence of underlying mechanisms. However, uncertainties such as measurement noise and modeling errors can compromise the reliability of ML predictions, highlighting the need for effective uncertainty awareness to enhance prediction robustness. This paper presents a comprehensive review on navigating uncertainties in ML, categorizing uncertainty-aware approaches into probabilistic methods (including Bayesian and frequentist perspectives) and non-probabilistic methods (such as interval learning and fuzzy learning). Bayesian neural networks, known for their uncertainty quantification and nonlinear mapping capabilities, are emphasized for their superior performance and potential. The review covers various techniques and methodologies for addressing uncertainties in ML, discussing fundamentals and implementation procedures of each method. While providing a concise overview of fundamental concepts, the paper refrains from in-depth critical explanations. Strengths and limitations of each approach are examined, along with their applications in structural dynamic forward problems like response prediction, sensitivity assessment, and reliability analysis, and inverse problems like system identification, model updating, and damage identification. Additionally, the review identifies research gaps and suggests future directions for investigations, aiming to provide comprehensive insights to the research community. By offering an extensive overview of both probabilistic and non-probabilistic approaches, this review aims to assist researchers and practitioners in making informed decisions when utilizing ML techniques to address uncertainties in structural dynamic problems.
Related papers
- Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models [42.563558441750224]
Large Language Models (LLMs) have become fundamental to a broad spectrum of artificial intelligence applications.
Current methods often struggle to accurately identify, measure, and address the true uncertainty.
This paper introduces a comprehensive framework specifically designed to identify and understand the types and sources of uncertainty.
arXiv Detail & Related papers (2024-10-26T15:07:15Z) - A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice [7.687545159131024]
We clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions.
We categorize various classes of uncertainty estimation methods derived from approaches.
We also explore techniques for uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification.
arXiv Detail & Related papers (2024-10-20T07:55:44Z) - Machine Learning Robustness: A Primer [12.426425119438846]
The discussion begins with a detailed definition of robustness, portraying it as the ability of ML models to maintain stable performance across varied and unexpected environmental conditions.
The chapter delves into the factors that impede robustness, such as data bias, model complexity, and the pitfalls of underspecified ML pipelines.
The discussion progresses to explore amelioration strategies for bolstering robustness, starting with data-centric approaches like debiasing and augmentation.
arXiv Detail & Related papers (2024-04-01T03:49:42Z) - Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage? [35.15844215216846]
EDL methods are trained to learn a meta distribution over the predictive distribution by minimizing a specific objective function.
Recent studies identify limitations of the existing methods to conclude their learned uncertainties are unreliable.
We provide a sharper understanding of the behavior of a wide class of EDL methods by unifying various objective functions.
We conclude that even when EDL methods are empirically effective on downstream tasks, this occurs despite their poor uncertainty quantification capabilities.
arXiv Detail & Related papers (2024-02-09T03:23:39Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - A Robust Learning Methodology for Uncertainty-aware Scientific Machine
Learning models [0.0]
This work proposes a comprehensive methodology for uncertainty evaluation of the SciML.
The uncertainties considered in the proposed method are the absence of theory and causal models, the sensitiveness to data corruption or imperfection, and the computational effort.
The methodology is validated through a case study, developing a Soft Sensor for a polymerization reactor.
arXiv Detail & Related papers (2022-09-05T10:56:58Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.