論文の概要: Evaluating Membership Inference Attacks and Defenses in Federated
Learning
- arxiv url: http://arxiv.org/abs/2402.06289v1
- Date: Fri, 9 Feb 2024 09:58:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 17:32:18.049529
- Title: Evaluating Membership Inference Attacks and Defenses in Federated
Learning
- Title(参考訳): フェデレーション学習における会員推論攻撃と防衛の評価
- Authors: Gongxi Zhu, Donghao Li, Hanlin Gu, Yuxing Han, Yuan Yao, Lixin Fan,
Qiang Yang
- Abstract要約: 会員推論攻撃(MIA)は、連合学習におけるプライバシー保護への脅威を増大させる。
本稿では,既存のMIAと対応する防衛戦略の評価を行う。
- 参考スコア(独自算出の注目度): 23.080346952364884
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Membership Inference Attacks (MIAs) pose a growing threat to privacy
preservation in federated learning. The semi-honest attacker, e.g., the server,
may determine whether a particular sample belongs to a target client according
to the observed model information. This paper conducts an evaluation of
existing MIAs and corresponding defense strategies. Our evaluation on MIAs
reveals two important findings about the trend of MIAs. Firstly, combining
model information from multiple communication rounds (Multi-temporal) enhances
the overall effectiveness of MIAs compared to utilizing model information from
a single epoch. Secondly, incorporating models from non-target clients
(Multi-spatial) significantly improves the effectiveness of MIAs, particularly
when the clients' data is homogeneous. This highlights the importance of
considering the temporal and spatial model information in MIAs. Next, we assess
the effectiveness via privacy-utility tradeoff for two type defense mechanisms
against MIAs: Gradient Perturbation and Data Replacement. Our results
demonstrate that Data Replacement mechanisms achieve a more optimal balance
between preserving privacy and maintaining model utility. Therefore, we
recommend the adoption of Data Replacement methods as a defense strategy
against MIAs. Our code is available in https://github.com/Liar-Mask/FedMIA.
- Abstract(参考訳): 会員推論攻撃(MIA)は、連合学習におけるプライバシー保護への脅威を増大させる。
例えば、サーバは、観測されたモデル情報に基づいて、特定のサンプルがターゲットクライアントに属しているかどうかを判定することができる。
本稿では,既存のMIAと対応する防衛戦略の評価を行う。
MIAに関する評価では,MIAの傾向について2つの重要な知見が得られた。
まず、複数の通信ラウンド(Multi-temporal)からモデル情報を組み合わせることで、単一のエポックからモデル情報を利用するよりも、MIAの全体的な効果を高める。
第二に、非ターゲットクライアント(Multi-spatial)からのモデルの導入は、特にクライアントのデータが均質である場合、MIAの有効性を著しく向上させる。
このことは、MIAにおける時間的および空間的モデル情報を考えることの重要性を強調している。
次に、MIAに対する2種類の防御機構であるグラディエント摂動とデータ置換の有効性を評価する。
以上の結果から,データ置換機構は,プライバシ保護とモデルユーティリティ維持のバランスを,より最適なものにすることを示す。
そこで我々は,MIAに対する防衛戦略として,データ置換方式の採用を推奨する。
私たちのコードはhttps://github.com/Liar-Mask/FedMIA.comで利用可能です。
関連論文リスト
- Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
メンバーシップ推論攻撃(MIA)は、特定のインスタンスがターゲットモデルのトレーニングデータの一部であるかどうかを判断することを目的としている。
大規模言語モデル(LLM)にMIAを適用することは、事前学習データの大規模化と、会員シップのあいまいさによって、ユニークな課題をもたらす。
EM-MIAは,予測最大化アルゴリズムを用いて,メンバーシップスコアとプレフィックススコアを反復的に洗練するLLMの新しいMIA手法である。
論文 参考訳(メタデータ) (2024-10-10T03:31:16Z) - FedBayes: A Zero-Trust Federated Learning Aggregation to Defend Against
Adversarial Attacks [1.689369173057502]
フェデレートラーニング(Federated Learning)は、クライアントデータに直接アクセスすることなく、マシンラーニングモデルをトレーニングする分散メソッドを開発した。
悪意のあるクライアントは、グローバルモデルを破壊し、フェデレーション内のすべてのクライアントのパフォーマンスを低下させることができる。
新たなアグリゲーション手法であるFedBayesは、クライアントのモデル重みの確率を計算することにより、悪意のあるクライアントの効果を緩和する。
論文 参考訳(メタデータ) (2023-12-04T21:37:50Z) - MIA-BAD: An Approach for Enhancing Membership Inference Attack and its
Mitigation with Federated Learning [6.510488168434277]
メンバシップ推論攻撃(MIA)は、機械学習(ML)モデルのプライバシを妥協するための一般的なパラダイムである。
バッチ・ワイズ・アサート・データセット(MIA-BAD)を用いた強化されたメンバーシップ推論攻撃を提案する。
FLを用いたMLモデルのトレーニング方法を示すとともに,提案したMIA-BADアプローチによる脅威をFLアプローチで緩和する方法について検討する。
論文 参考訳(メタデータ) (2023-11-28T06:51:26Z) - Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration [32.15773300068426]
メンバーシップ推論攻撃は、対象のデータレコードがモデルトレーニングに使用されたかどうかを推測することを目的としている。
自己校正確率変動(SPV-MIA)に基づくメンバーシップ推論攻撃を提案する。
論文 参考訳(メタデータ) (2023-11-10T13:55:05Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
拡張データの情報を活用するために,新たなMI攻撃を提案する。
モデルが拡張データで訓練された場合、最適な会員推定値を確立する。
論文 参考訳(メタデータ) (2020-07-21T02:21:10Z) - A Framework for Evaluating Gradient Leakage Attacks in Federated
Learning [14.134217287912008]
Federated Learning(FL)は、クライアントのネットワークと協調的なモデルトレーニングのための、新興の分散機械学習フレームワークである。
最近の研究では、クライアントからフェデレーションサーバにローカルパラメータの更新を共有しても、グラデーションリーク攻撃の影響を受けやすいことが示されている。
本稿では,クライアントプライバシ漏洩攻撃のさまざまな形態の評価と比較を行うための原則的フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-22T05:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。