論文の概要: Evaluating Membership Inference Attacks and Defenses in Federated
Learning
- arxiv url: http://arxiv.org/abs/2402.06289v1
- Date: Fri, 9 Feb 2024 09:58:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 17:32:18.049529
- Title: Evaluating Membership Inference Attacks and Defenses in Federated
Learning
- Title(参考訳): フェデレーション学習における会員推論攻撃と防衛の評価
- Authors: Gongxi Zhu, Donghao Li, Hanlin Gu, Yuxing Han, Yuan Yao, Lixin Fan,
Qiang Yang
- Abstract要約: 会員推論攻撃(MIA)は、連合学習におけるプライバシー保護への脅威を増大させる。
本稿では,既存のMIAと対応する防衛戦略の評価を行う。
- 参考スコア(独自算出の注目度): 23.080346952364884
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Membership Inference Attacks (MIAs) pose a growing threat to privacy
preservation in federated learning. The semi-honest attacker, e.g., the server,
may determine whether a particular sample belongs to a target client according
to the observed model information. This paper conducts an evaluation of
existing MIAs and corresponding defense strategies. Our evaluation on MIAs
reveals two important findings about the trend of MIAs. Firstly, combining
model information from multiple communication rounds (Multi-temporal) enhances
the overall effectiveness of MIAs compared to utilizing model information from
a single epoch. Secondly, incorporating models from non-target clients
(Multi-spatial) significantly improves the effectiveness of MIAs, particularly
when the clients' data is homogeneous. This highlights the importance of
considering the temporal and spatial model information in MIAs. Next, we assess
the effectiveness via privacy-utility tradeoff for two type defense mechanisms
against MIAs: Gradient Perturbation and Data Replacement. Our results
demonstrate that Data Replacement mechanisms achieve a more optimal balance
between preserving privacy and maintaining model utility. Therefore, we
recommend the adoption of Data Replacement methods as a defense strategy
against MIAs. Our code is available in https://github.com/Liar-Mask/FedMIA.
- Abstract(参考訳): 会員推論攻撃(MIA)は、連合学習におけるプライバシー保護への脅威を増大させる。
例えば、サーバは、観測されたモデル情報に基づいて、特定のサンプルがターゲットクライアントに属しているかどうかを判定することができる。
本稿では,既存のMIAと対応する防衛戦略の評価を行う。
MIAに関する評価では,MIAの傾向について2つの重要な知見が得られた。
まず、複数の通信ラウンド(Multi-temporal)からモデル情報を組み合わせることで、単一のエポックからモデル情報を利用するよりも、MIAの全体的な効果を高める。
第二に、非ターゲットクライアント(Multi-spatial)からのモデルの導入は、特にクライアントのデータが均質である場合、MIAの有効性を著しく向上させる。
このことは、MIAにおける時間的および空間的モデル情報を考えることの重要性を強調している。
次に、MIAに対する2種類の防御機構であるグラディエント摂動とデータ置換の有効性を評価する。
以上の結果から,データ置換機構は,プライバシ保護とモデルユーティリティ維持のバランスを,より最適なものにすることを示す。
そこで我々は,MIAに対する防衛戦略として,データ置換方式の採用を推奨する。
私たちのコードはhttps://github.com/Liar-Mask/FedMIA.comで利用可能です。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - Dual-Model Defense: Safeguarding Diffusion Models from Membership Inference Attacks through Disjoint Data Splitting [6.984396318800444]
拡散モデルは、メンバーシップ推論攻撃(MIA)に弱いことが証明されている。
本稿では,MIAに対して拡散モデルを保護するための新しい2つのアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-22T03:02:29Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
メンバーシップ推論攻撃(MIA)は、特定のインスタンスがターゲットモデルのトレーニングデータの一部であるかどうかを判断することを目的としている。
大規模言語モデル(LLM)にMIAを適用することは、事前学習データの大規模化と、会員シップのあいまいさによって、ユニークな課題をもたらす。
EM-MIAは,予測最大化アルゴリズムを用いて,メンバーシップスコアとプレフィックススコアを反復的に洗練するLLMの新しいMIA手法である。
論文 参考訳(メタデータ) (2024-10-10T03:31:16Z) - MIA-BAD: An Approach for Enhancing Membership Inference Attack and its
Mitigation with Federated Learning [6.510488168434277]
メンバシップ推論攻撃(MIA)は、機械学習(ML)モデルのプライバシを妥協するための一般的なパラダイムである。
バッチ・ワイズ・アサート・データセット(MIA-BAD)を用いた強化されたメンバーシップ推論攻撃を提案する。
FLを用いたMLモデルのトレーニング方法を示すとともに,提案したMIA-BADアプローチによる脅威をFLアプローチで緩和する方法について検討する。
論文 参考訳(メタデータ) (2023-11-28T06:51:26Z) - Practical Membership Inference Attacks Against Large-Scale Multi-Modal
Models: A Pilot Study [17.421886085918608]
メンバーシップ推論攻撃(MIA)は、機械学習モデルのトレーニングにデータポイントを使用したかどうかを推測することを目的としている。
これらの攻撃は、潜在的なプライバシー上の脆弱性を特定し、個人データの不正使用を検出するために使用できる。
本稿では,大規模マルチモーダルモデルに対する実用的なMIAの開発に向けて第一歩を踏み出す。
論文 参考訳(メタデータ) (2023-09-29T19:38:40Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - Improving Robustness to Model Inversion Attacks via Mutual Information
Regularization [12.079281416410227]
本稿では,モデル逆転攻撃に対する防御機構について検討する。
MIは、ターゲット機械学習モデルへのアクセスからトレーニングデータ配布に関する情報を推測することを目的とした、プライバシ攻撃の一種である。
我々はMI攻撃に対するMID(Multual Information Regularization based Defense)を提案する。
論文 参考訳(メタデータ) (2020-09-11T06:02:44Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
拡張データの情報を活用するために,新たなMI攻撃を提案する。
モデルが拡張データで訓練された場合、最適な会員推定値を確立する。
論文 参考訳(メタデータ) (2020-07-21T02:21:10Z) - On the Effectiveness of Regularization Against Membership Inference
Attacks [26.137849584503222]
ディープラーニングモデルは、トレーニングデータに関する情報を漏らすと、しばしばプライバシー上の懸念を引き起こす。
これにより、モデルのトレーニングセットにあるデータポイントがメンバーシップ推論アタック(MIA)によって決定される。
多くの正規化機構が存在するが、MIAに対する効果は体系的に研究されていない。
論文 参考訳(メタデータ) (2020-06-09T15:17:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。